This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the K th digit in the decimal (when base B = 1 0 ) expansion of a number A . K = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | digit2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 2 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 3 | reexpcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ ) |
| 5 | remulcl | ⊢ ( ( ( 𝐵 ↑ 𝐾 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ∈ ℝ ) | |
| 6 | 4 5 | stoic3 | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ∈ ℝ ) |
| 7 | 6 | 3comr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ∈ ℝ ) |
| 8 | reflcl | ⊢ ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) ∈ ℝ ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) ∈ ℝ ) |
| 10 | nnrp | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → 𝐵 ∈ ℝ+ ) |
| 12 | modval | ⊢ ( ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) ) ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) ) ) ) |
| 14 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → 𝐵 ∈ ℕ ) | |
| 15 | fldiv | ⊢ ( ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℕ ) → ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) = ( ⌊ ‘ ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) ) ) | |
| 16 | 7 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) = ( ⌊ ‘ ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) ) ) |
| 17 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 18 | expcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ↑ 𝐾 ) ∈ ℂ ) | |
| 19 | 17 2 18 | syl2an | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ↑ 𝐾 ) ∈ ℂ ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ↑ 𝐾 ) ∈ ℂ ) |
| 21 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 23 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 24 | 17 23 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 26 | div23 | ⊢ ( ( ( 𝐵 ↑ 𝐾 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) = ( ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) · 𝐴 ) ) | |
| 27 | 20 22 25 26 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) = ( ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) · 𝐴 ) ) |
| 28 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 29 | expm1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ ) → ( 𝐵 ↑ ( 𝐾 − 1 ) ) = ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) ) | |
| 30 | 17 23 28 29 | syl2an3an | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ↑ ( 𝐾 − 1 ) ) = ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 ↑ ( 𝐾 − 1 ) ) = ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) = ( ( ( 𝐵 ↑ 𝐾 ) / 𝐵 ) · 𝐴 ) ) |
| 33 | 27 32 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) = ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) / 𝐵 ) ) = ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) |
| 35 | 16 34 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) = ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐵 · ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) ) = ( 𝐵 · ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) / 𝐵 ) ) ) ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) ) ) |
| 38 | 13 37 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) mod 𝐵 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ 𝐾 ) · 𝐴 ) ) − ( 𝐵 · ( ⌊ ‘ ( ( 𝐵 ↑ ( 𝐾 − 1 ) ) · 𝐴 ) ) ) ) ) |