This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to an integer power minus one. (Contributed by NM, 25-Dec-2008) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expm1 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | expsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. ZZ /\ 1 e. ZZ ) ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / ( A ^ 1 ) ) ) |
|
| 3 | 1 2 | mpanr2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. ZZ ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / ( A ^ 1 ) ) ) |
| 4 | 3 | 3impa | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / ( A ^ 1 ) ) ) |
| 5 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ 1 ) = A ) |
| 7 | 6 | oveq2d | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( A ^ N ) / ( A ^ 1 ) ) = ( ( A ^ N ) / A ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / A ) ) |