This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the K th digit in the decimal expansion of a number A (when base B = 1 0 ). K = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | digit1 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | digit2 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
|
| 2 | 1 | 3coml | |- ( ( B e. NN /\ K e. NN /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
| 3 | 2 | 3expa | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
| 4 | 3 | oveq1d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) mod ( B ^ K ) ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) mod ( B ^ K ) ) ) |
| 5 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 6 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 7 | reexpcl | |- ( ( B e. RR /\ K e. NN0 ) -> ( B ^ K ) e. RR ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. RR ) |
| 9 | remulcl | |- ( ( ( B ^ K ) e. RR /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
|
| 10 | 8 9 | sylan | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 11 | reflcl | |- ( ( ( B ^ K ) x. A ) e. RR -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
|
| 12 | 10 11 | syl | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
| 13 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 14 | 13 | ad2antrr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> B e. RR+ ) |
| 15 | 12 14 | modcld | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) e. RR ) |
| 16 | nnexpcl | |- ( ( B e. NN /\ K e. NN0 ) -> ( B ^ K ) e. NN ) |
|
| 17 | 6 16 | sylan2 | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. NN ) |
| 18 | 17 | nnrpd | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. RR+ ) |
| 19 | 18 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B ^ K ) e. RR+ ) |
| 20 | modge0 | |- ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ B e. RR+ ) -> 0 <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) ) |
|
| 21 | 12 14 20 | syl2anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> 0 <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) ) |
| 22 | 5 | ad2antrr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> B e. RR ) |
| 23 | 8 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B ^ K ) e. RR ) |
| 24 | modlt | |- ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ B e. RR+ ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) < B ) |
|
| 25 | 12 14 24 | syl2anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) < B ) |
| 26 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 27 | exp1 | |- ( B e. CC -> ( B ^ 1 ) = B ) |
|
| 28 | 26 27 | syl | |- ( B e. NN -> ( B ^ 1 ) = B ) |
| 29 | 28 | adantr | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ 1 ) = B ) |
| 30 | 5 | adantr | |- ( ( B e. NN /\ K e. NN ) -> B e. RR ) |
| 31 | nnge1 | |- ( B e. NN -> 1 <_ B ) |
|
| 32 | 31 | adantr | |- ( ( B e. NN /\ K e. NN ) -> 1 <_ B ) |
| 33 | simpr | |- ( ( B e. NN /\ K e. NN ) -> K e. NN ) |
|
| 34 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 35 | 33 34 | eleqtrdi | |- ( ( B e. NN /\ K e. NN ) -> K e. ( ZZ>= ` 1 ) ) |
| 36 | leexp2a | |- ( ( B e. RR /\ 1 <_ B /\ K e. ( ZZ>= ` 1 ) ) -> ( B ^ 1 ) <_ ( B ^ K ) ) |
|
| 37 | 30 32 35 36 | syl3anc | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ 1 ) <_ ( B ^ K ) ) |
| 38 | 29 37 | eqbrtrrd | |- ( ( B e. NN /\ K e. NN ) -> B <_ ( B ^ K ) ) |
| 39 | 38 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> B <_ ( B ^ K ) ) |
| 40 | 15 22 23 25 39 | ltletrd | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) < ( B ^ K ) ) |
| 41 | modid | |- ( ( ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) e. RR /\ ( B ^ K ) e. RR+ ) /\ ( 0 <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) /\ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) < ( B ^ K ) ) ) -> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) mod ( B ^ K ) ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) ) |
|
| 42 | 15 19 21 40 41 | syl22anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) mod ( B ^ K ) ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) ) |
| 43 | simpll | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> B e. NN ) |
|
| 44 | nnm1nn0 | |- ( K e. NN -> ( K - 1 ) e. NN0 ) |
|
| 45 | reexpcl | |- ( ( B e. RR /\ ( K - 1 ) e. NN0 ) -> ( B ^ ( K - 1 ) ) e. RR ) |
|
| 46 | 5 44 45 | syl2an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) e. RR ) |
| 47 | remulcl | |- ( ( ( B ^ ( K - 1 ) ) e. RR /\ A e. RR ) -> ( ( B ^ ( K - 1 ) ) x. A ) e. RR ) |
|
| 48 | 46 47 | sylan | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B ^ ( K - 1 ) ) x. A ) e. RR ) |
| 49 | nnexpcl | |- ( ( B e. NN /\ ( K - 1 ) e. NN0 ) -> ( B ^ ( K - 1 ) ) e. NN ) |
|
| 50 | 44 49 | sylan2 | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) e. NN ) |
| 51 | 50 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B ^ ( K - 1 ) ) e. NN ) |
| 52 | modmulnn | |- ( ( B e. NN /\ ( ( B ^ ( K - 1 ) ) x. A ) e. RR /\ ( B ^ ( K - 1 ) ) e. NN ) -> ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) <_ ( ( |_ ` ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) ) |
|
| 53 | 43 48 51 52 | syl3anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) <_ ( ( |_ ` ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) ) |
| 54 | expm1t | |- ( ( B e. CC /\ K e. NN ) -> ( B ^ K ) = ( ( B ^ ( K - 1 ) ) x. B ) ) |
|
| 55 | expcl | |- ( ( B e. CC /\ ( K - 1 ) e. NN0 ) -> ( B ^ ( K - 1 ) ) e. CC ) |
|
| 56 | 44 55 | sylan2 | |- ( ( B e. CC /\ K e. NN ) -> ( B ^ ( K - 1 ) ) e. CC ) |
| 57 | simpl | |- ( ( B e. CC /\ K e. NN ) -> B e. CC ) |
|
| 58 | 56 57 | mulcomd | |- ( ( B e. CC /\ K e. NN ) -> ( ( B ^ ( K - 1 ) ) x. B ) = ( B x. ( B ^ ( K - 1 ) ) ) ) |
| 59 | 54 58 | eqtrd | |- ( ( B e. CC /\ K e. NN ) -> ( B ^ K ) = ( B x. ( B ^ ( K - 1 ) ) ) ) |
| 60 | 26 59 | sylan | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) = ( B x. ( B ^ ( K - 1 ) ) ) ) |
| 61 | 60 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B ^ K ) = ( B x. ( B ^ ( K - 1 ) ) ) ) |
| 62 | 61 | oveq2d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) = ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) ) |
| 63 | 61 | oveq1d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B ^ K ) x. A ) = ( ( B x. ( B ^ ( K - 1 ) ) ) x. A ) ) |
| 64 | 26 | ad2antrr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> B e. CC ) |
| 65 | 26 44 55 | syl2an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) e. CC ) |
| 66 | 65 | adantr | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B ^ ( K - 1 ) ) e. CC ) |
| 67 | recn | |- ( A e. RR -> A e. CC ) |
|
| 68 | 67 | adantl | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> A e. CC ) |
| 69 | 64 66 68 | mulassd | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B x. ( B ^ ( K - 1 ) ) ) x. A ) = ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 70 | 63 69 | eqtrd | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B ^ K ) x. A ) = ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 71 | 70 | fveq2d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( |_ ` ( ( B ^ K ) x. A ) ) = ( |_ ` ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) |
| 72 | 71 61 | oveq12d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) = ( ( |_ ` ( B x. ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B x. ( B ^ ( K - 1 ) ) ) ) ) |
| 73 | 53 62 72 | 3brtr4d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) ) |
| 74 | reflcl | |- ( ( ( B ^ ( K - 1 ) ) x. A ) e. RR -> ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) e. RR ) |
|
| 75 | 48 74 | syl | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) e. RR ) |
| 76 | remulcl | |- ( ( B e. RR /\ ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) e. RR ) -> ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) e. RR ) |
|
| 77 | 22 75 76 | syl2anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) e. RR ) |
| 78 | modsubdir | |- ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) e. RR /\ ( B ^ K ) e. RR+ ) -> ( ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) <-> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) mod ( B ^ K ) ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) ) |
|
| 79 | 12 77 19 78 | syl3anc | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) <_ ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) <-> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) mod ( B ^ K ) ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) ) |
| 80 | 73 79 | mpbid | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) mod ( B ^ K ) ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) |
| 81 | 4 42 80 | 3eqtr3d | |- ( ( ( B e. NN /\ K e. NN ) /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) |
| 82 | 81 | 3impa | |- ( ( B e. NN /\ K e. NN /\ A e. RR ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) |
| 83 | 82 | 3comr | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( ( |_ ` ( ( B ^ K ) x. A ) ) mod ( B ^ K ) ) - ( ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) mod ( B ^ K ) ) ) ) |