This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in ApostolNT p. 107. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modexp | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> C e. NN0 ) |
|
| 2 | id | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) ) |
|
| 3 | 2 | 3adant2l | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) ) |
| 4 | oveq2 | |- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
|
| 5 | 4 | oveq1d | |- ( x = 0 -> ( ( A ^ x ) mod D ) = ( ( A ^ 0 ) mod D ) ) |
| 6 | oveq2 | |- ( x = 0 -> ( B ^ x ) = ( B ^ 0 ) ) |
|
| 7 | 6 | oveq1d | |- ( x = 0 -> ( ( B ^ x ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
| 8 | 5 7 | eqeq12d | |- ( x = 0 -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) ) |
| 9 | 8 | imbi2d | |- ( x = 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) ) ) |
| 10 | oveq2 | |- ( x = k -> ( A ^ x ) = ( A ^ k ) ) |
|
| 11 | 10 | oveq1d | |- ( x = k -> ( ( A ^ x ) mod D ) = ( ( A ^ k ) mod D ) ) |
| 12 | oveq2 | |- ( x = k -> ( B ^ x ) = ( B ^ k ) ) |
|
| 13 | 12 | oveq1d | |- ( x = k -> ( ( B ^ x ) mod D ) = ( ( B ^ k ) mod D ) ) |
| 14 | 11 13 | eqeq12d | |- ( x = k -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) ) |
| 15 | 14 | imbi2d | |- ( x = k -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) ) ) |
| 16 | oveq2 | |- ( x = ( k + 1 ) -> ( A ^ x ) = ( A ^ ( k + 1 ) ) ) |
|
| 17 | 16 | oveq1d | |- ( x = ( k + 1 ) -> ( ( A ^ x ) mod D ) = ( ( A ^ ( k + 1 ) ) mod D ) ) |
| 18 | oveq2 | |- ( x = ( k + 1 ) -> ( B ^ x ) = ( B ^ ( k + 1 ) ) ) |
|
| 19 | 18 | oveq1d | |- ( x = ( k + 1 ) -> ( ( B ^ x ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) |
| 20 | 17 19 | eqeq12d | |- ( x = ( k + 1 ) -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) |
| 21 | 20 | imbi2d | |- ( x = ( k + 1 ) -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
| 22 | oveq2 | |- ( x = C -> ( A ^ x ) = ( A ^ C ) ) |
|
| 23 | 22 | oveq1d | |- ( x = C -> ( ( A ^ x ) mod D ) = ( ( A ^ C ) mod D ) ) |
| 24 | oveq2 | |- ( x = C -> ( B ^ x ) = ( B ^ C ) ) |
|
| 25 | 24 | oveq1d | |- ( x = C -> ( ( B ^ x ) mod D ) = ( ( B ^ C ) mod D ) ) |
| 26 | 23 25 | eqeq12d | |- ( x = C -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) |
| 27 | 26 | imbi2d | |- ( x = C -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) ) |
| 28 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 29 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 30 | 28 29 | syl | |- ( A e. ZZ -> ( A ^ 0 ) = 1 ) |
| 31 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 32 | exp0 | |- ( B e. CC -> ( B ^ 0 ) = 1 ) |
|
| 33 | 31 32 | syl | |- ( B e. ZZ -> ( B ^ 0 ) = 1 ) |
| 34 | 33 | eqcomd | |- ( B e. ZZ -> 1 = ( B ^ 0 ) ) |
| 35 | 30 34 | sylan9eq | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ^ 0 ) = ( B ^ 0 ) ) |
| 36 | 35 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
| 37 | 36 | 3ad2ant1 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
| 38 | simp21l | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> A e. ZZ ) |
|
| 39 | simp1 | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> k e. NN0 ) |
|
| 40 | zexpcl | |- ( ( A e. ZZ /\ k e. NN0 ) -> ( A ^ k ) e. ZZ ) |
|
| 41 | 38 39 40 | syl2anc | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A ^ k ) e. ZZ ) |
| 42 | simp21r | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> B e. ZZ ) |
|
| 43 | zexpcl | |- ( ( B e. ZZ /\ k e. NN0 ) -> ( B ^ k ) e. ZZ ) |
|
| 44 | 42 39 43 | syl2anc | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( B ^ k ) e. ZZ ) |
| 45 | simp22 | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> D e. RR+ ) |
|
| 46 | simp3 | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) |
|
| 47 | simp23 | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A mod D ) = ( B mod D ) ) |
|
| 48 | 41 44 38 42 45 46 47 | modmul12d | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( ( A ^ k ) x. A ) mod D ) = ( ( ( B ^ k ) x. B ) mod D ) ) |
| 49 | 38 | zcnd | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> A e. CC ) |
| 50 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 51 | 49 39 50 | syl2anc | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 52 | 51 | oveq1d | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( ( A ^ k ) x. A ) mod D ) ) |
| 53 | 42 | zcnd | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> B e. CC ) |
| 54 | expp1 | |- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
|
| 55 | 53 39 54 | syl2anc | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
| 56 | 55 | oveq1d | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( B ^ ( k + 1 ) ) mod D ) = ( ( ( B ^ k ) x. B ) mod D ) ) |
| 57 | 48 52 56 | 3eqtr4d | |- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) |
| 58 | 57 | 3exp | |- ( k e. NN0 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
| 59 | 58 | a2d | |- ( k e. NN0 -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
| 60 | 9 15 21 27 37 59 | nn0ind | |- ( C e. NN0 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) |
| 61 | 1 3 60 | sylc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) |