This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difgtsumgt | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) -> C < ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | nn0cn | |- ( B e. NN0 -> B e. CC ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. RR /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
| 4 | 3 | 3adant3 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A e. CC /\ B e. CC ) ) |
| 5 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) = ( A - B ) ) |
| 7 | 6 | eqcomd | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A - B ) = ( A + -u B ) ) |
| 8 | 7 | breq2d | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) <-> C < ( A + -u B ) ) ) |
| 9 | simp3 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> C e. RR ) |
|
| 10 | simp1 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> A e. RR ) |
|
| 11 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 12 | 11 | renegcld | |- ( B e. NN0 -> -u B e. RR ) |
| 13 | 12 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B e. RR ) |
| 14 | 10 13 | readdcld | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) e. RR ) |
| 15 | 11 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> B e. RR ) |
| 16 | 10 15 | readdcld | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + B ) e. RR ) |
| 17 | 9 14 16 | 3jca | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C e. RR /\ ( A + -u B ) e. RR /\ ( A + B ) e. RR ) ) |
| 18 | nn0negleid | |- ( B e. NN0 -> -u B <_ B ) |
|
| 19 | 18 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B <_ B ) |
| 20 | 13 15 10 19 | leadd2dd | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) <_ ( A + B ) ) |
| 21 | 17 20 | lelttrdi | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A + -u B ) -> C < ( A + B ) ) ) |
| 22 | 8 21 | sylbid | |- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) -> C < ( A + B ) ) ) |