This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrngc2.c | |- C = ( RngCat ` U ) |
|
| dfrngc2.u | |- ( ph -> U e. V ) |
||
| dfrngc2.b | |- ( ph -> B = ( U i^i Rng ) ) |
||
| dfrngc2.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
||
| dfrngc2.o | |- ( ph -> .x. = ( comp ` ( ExtStrCat ` U ) ) ) |
||
| Assertion | dfrngc2 | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrngc2.c | |- C = ( RngCat ` U ) |
|
| 2 | dfrngc2.u | |- ( ph -> U e. V ) |
|
| 3 | dfrngc2.b | |- ( ph -> B = ( U i^i Rng ) ) |
|
| 4 | dfrngc2.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
|
| 5 | dfrngc2.o | |- ( ph -> .x. = ( comp ` ( ExtStrCat ` U ) ) ) |
|
| 6 | 1 2 3 4 | rngcval | |- ( ph -> C = ( ( ExtStrCat ` U ) |`cat H ) ) |
| 7 | eqid | |- ( ( ExtStrCat ` U ) |`cat H ) = ( ( ExtStrCat ` U ) |`cat H ) |
|
| 8 | fvexd | |- ( ph -> ( ExtStrCat ` U ) e. _V ) |
|
| 9 | inex1g | |- ( U e. V -> ( U i^i Rng ) e. _V ) |
|
| 10 | 2 9 | syl | |- ( ph -> ( U i^i Rng ) e. _V ) |
| 11 | 3 10 | eqeltrd | |- ( ph -> B e. _V ) |
| 12 | 3 4 | rnghmresfn | |- ( ph -> H Fn ( B X. B ) ) |
| 13 | 7 8 11 12 | rescval2 | |- ( ph -> ( ( ExtStrCat ` U ) |`cat H ) = ( ( ( ExtStrCat ` U ) |`s B ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 14 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 15 | eqidd | |- ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 16 | eqid | |- ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) |
|
| 17 | 14 2 16 | estrccofval | |- ( ph -> ( comp ` ( ExtStrCat ` U ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 18 | 5 17 | eqtrd | |- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 19 | 14 2 15 18 | estrcval | |- ( ph -> ( ExtStrCat ` U ) = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , .x. >. } ) |
| 20 | mpoexga | |- ( ( U e. V /\ U e. V ) -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) |
|
| 21 | 2 2 20 | syl2anc | |- ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) |
| 22 | fvexd | |- ( ph -> ( comp ` ( ExtStrCat ` U ) ) e. _V ) |
|
| 23 | 5 22 | eqeltrd | |- ( ph -> .x. e. _V ) |
| 24 | rnghmfn | |- RngHom Fn ( Rng X. Rng ) |
|
| 25 | fnfun | |- ( RngHom Fn ( Rng X. Rng ) -> Fun RngHom ) |
|
| 26 | 24 25 | mp1i | |- ( ph -> Fun RngHom ) |
| 27 | sqxpexg | |- ( B e. _V -> ( B X. B ) e. _V ) |
|
| 28 | 11 27 | syl | |- ( ph -> ( B X. B ) e. _V ) |
| 29 | resfunexg | |- ( ( Fun RngHom /\ ( B X. B ) e. _V ) -> ( RngHom |` ( B X. B ) ) e. _V ) |
|
| 30 | 26 28 29 | syl2anc | |- ( ph -> ( RngHom |` ( B X. B ) ) e. _V ) |
| 31 | 4 30 | eqeltrd | |- ( ph -> H e. _V ) |
| 32 | inss1 | |- ( U i^i Rng ) C_ U |
|
| 33 | 3 32 | eqsstrdi | |- ( ph -> B C_ U ) |
| 34 | 19 2 21 23 31 33 | estrres | |- ( ph -> ( ( ( ExtStrCat ` U ) |`s B ) sSet <. ( Hom ` ndx ) , H >. ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 35 | 6 13 34 | 3eqtrd | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |