This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcval.c | |- C = ( RngCat ` U ) |
|
| rngcval.u | |- ( ph -> U e. V ) |
||
| rngcval.b | |- ( ph -> B = ( U i^i Rng ) ) |
||
| rngcval.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
||
| Assertion | rngcval | |- ( ph -> C = ( ( ExtStrCat ` U ) |`cat H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcval.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcval.u | |- ( ph -> U e. V ) |
|
| 3 | rngcval.b | |- ( ph -> B = ( U i^i Rng ) ) |
|
| 4 | rngcval.h | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
|
| 5 | df-rngc | |- RngCat = ( u e. _V |-> ( ( ExtStrCat ` u ) |`cat ( RngHom |` ( ( u i^i Rng ) X. ( u i^i Rng ) ) ) ) ) |
|
| 6 | fveq2 | |- ( u = U -> ( ExtStrCat ` u ) = ( ExtStrCat ` U ) ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ u = U ) -> ( ExtStrCat ` u ) = ( ExtStrCat ` U ) ) |
| 8 | ineq1 | |- ( u = U -> ( u i^i Rng ) = ( U i^i Rng ) ) |
|
| 9 | 8 | sqxpeqd | |- ( u = U -> ( ( u i^i Rng ) X. ( u i^i Rng ) ) = ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) |
| 10 | 3 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) |
| 11 | 10 | eqcomd | |- ( ph -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) = ( B X. B ) ) |
| 12 | 9 11 | sylan9eqr | |- ( ( ph /\ u = U ) -> ( ( u i^i Rng ) X. ( u i^i Rng ) ) = ( B X. B ) ) |
| 13 | 12 | reseq2d | |- ( ( ph /\ u = U ) -> ( RngHom |` ( ( u i^i Rng ) X. ( u i^i Rng ) ) ) = ( RngHom |` ( B X. B ) ) ) |
| 14 | 4 | eqcomd | |- ( ph -> ( RngHom |` ( B X. B ) ) = H ) |
| 15 | 14 | adantr | |- ( ( ph /\ u = U ) -> ( RngHom |` ( B X. B ) ) = H ) |
| 16 | 13 15 | eqtrd | |- ( ( ph /\ u = U ) -> ( RngHom |` ( ( u i^i Rng ) X. ( u i^i Rng ) ) ) = H ) |
| 17 | 7 16 | oveq12d | |- ( ( ph /\ u = U ) -> ( ( ExtStrCat ` u ) |`cat ( RngHom |` ( ( u i^i Rng ) X. ( u i^i Rng ) ) ) ) = ( ( ExtStrCat ` U ) |`cat H ) ) |
| 18 | 2 | elexd | |- ( ph -> U e. _V ) |
| 19 | ovexd | |- ( ph -> ( ( ExtStrCat ` U ) |`cat H ) e. _V ) |
|
| 20 | 5 17 18 19 | fvmptd2 | |- ( ph -> ( RngCat ` U ) = ( ( ExtStrCat ` U ) |`cat H ) ) |
| 21 | 1 20 | eqtrid | |- ( ph -> C = ( ( ExtStrCat ` U ) |`cat H ) ) |