This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmsscmap.u | |- ( ph -> U e. V ) |
|
| rnghmsscmap.r | |- ( ph -> R = ( Rng i^i U ) ) |
||
| Assertion | rnghmsscmap2 | |- ( ph -> ( RngHom |` ( R X. R ) ) C_cat ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsscmap.u | |- ( ph -> U e. V ) |
|
| 2 | rnghmsscmap.r | |- ( ph -> R = ( Rng i^i U ) ) |
|
| 3 | ssidd | |- ( ph -> R C_ R ) |
|
| 4 | eqid | |- ( Base ` a ) = ( Base ` a ) |
|
| 5 | eqid | |- ( Base ` b ) = ( Base ` b ) |
|
| 6 | 4 5 | rnghmf | |- ( h e. ( a RngHom b ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
| 7 | simpr | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
|
| 8 | fvex | |- ( Base ` b ) e. _V |
|
| 9 | fvex | |- ( Base ` a ) e. _V |
|
| 10 | 8 9 | pm3.2i | |- ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) |
| 11 | elmapg | |- ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
|
| 12 | 10 11 | mp1i | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
| 13 | 7 12 | mpbird | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 14 | 13 | ex | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h : ( Base ` a ) --> ( Base ` b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 15 | 6 14 | syl5 | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h e. ( a RngHom b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 16 | 15 | ssrdv | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a RngHom b ) C_ ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 17 | ovres | |- ( ( a e. R /\ b e. R ) -> ( a ( RngHom |` ( R X. R ) ) b ) = ( a RngHom b ) ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RngHom |` ( R X. R ) ) b ) = ( a RngHom b ) ) |
| 19 | eqidd | |- ( ( a e. R /\ b e. R ) -> ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 20 | fveq2 | |- ( y = b -> ( Base ` y ) = ( Base ` b ) ) |
|
| 21 | fveq2 | |- ( x = a -> ( Base ` x ) = ( Base ` a ) ) |
|
| 22 | 20 21 | oveqan12rd | |- ( ( x = a /\ y = b ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 23 | 22 | adantl | |- ( ( ( a e. R /\ b e. R ) /\ ( x = a /\ y = b ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 24 | simpl | |- ( ( a e. R /\ b e. R ) -> a e. R ) |
|
| 25 | simpr | |- ( ( a e. R /\ b e. R ) -> b e. R ) |
|
| 26 | ovexd | |- ( ( a e. R /\ b e. R ) -> ( ( Base ` b ) ^m ( Base ` a ) ) e. _V ) |
|
| 27 | 19 23 24 25 26 | ovmpod | |- ( ( a e. R /\ b e. R ) -> ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 28 | 27 | adantl | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 29 | 16 18 28 | 3sstr4d | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RngHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
| 30 | 29 | ralrimivva | |- ( ph -> A. a e. R A. b e. R ( a ( RngHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
| 31 | rnghmfn | |- RngHom Fn ( Rng X. Rng ) |
|
| 32 | 31 | a1i | |- ( ph -> RngHom Fn ( Rng X. Rng ) ) |
| 33 | inss1 | |- ( Rng i^i U ) C_ Rng |
|
| 34 | 2 33 | eqsstrdi | |- ( ph -> R C_ Rng ) |
| 35 | xpss12 | |- ( ( R C_ Rng /\ R C_ Rng ) -> ( R X. R ) C_ ( Rng X. Rng ) ) |
|
| 36 | 34 34 35 | syl2anc | |- ( ph -> ( R X. R ) C_ ( Rng X. Rng ) ) |
| 37 | fnssres | |- ( ( RngHom Fn ( Rng X. Rng ) /\ ( R X. R ) C_ ( Rng X. Rng ) ) -> ( RngHom |` ( R X. R ) ) Fn ( R X. R ) ) |
|
| 38 | 32 36 37 | syl2anc | |- ( ph -> ( RngHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 39 | eqid | |- ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
|
| 40 | ovex | |- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
|
| 41 | 39 40 | fnmpoi | |- ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( R X. R ) |
| 42 | 41 | a1i | |- ( ph -> ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( R X. R ) ) |
| 43 | incom | |- ( Rng i^i U ) = ( U i^i Rng ) |
|
| 44 | inex1g | |- ( U e. V -> ( U i^i Rng ) e. _V ) |
|
| 45 | 1 44 | syl | |- ( ph -> ( U i^i Rng ) e. _V ) |
| 46 | 43 45 | eqeltrid | |- ( ph -> ( Rng i^i U ) e. _V ) |
| 47 | 2 46 | eqeltrd | |- ( ph -> R e. _V ) |
| 48 | 38 42 47 | isssc | |- ( ph -> ( ( RngHom |` ( R X. R ) ) C_cat ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) <-> ( R C_ R /\ A. a e. R A. b e. R ( a ( RngHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) ) ) |
| 49 | 3 30 48 | mpbir2and | |- ( ph -> ( RngHom |` ( R X. R ) ) C_cat ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |