This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcval.c | |- C = ( ExtStrCat ` U ) |
|
| estrcval.u | |- ( ph -> U e. V ) |
||
| estrcval.h | |- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
||
| estrcval.o | |- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
||
| Assertion | estrcval | |- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcval.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrcval.u | |- ( ph -> U e. V ) |
|
| 3 | estrcval.h | |- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 4 | estrcval.o | |- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
|
| 5 | df-estrc | |- ExtStrCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |
|
| 6 | simpr | |- ( ( ph /\ u = U ) -> u = U ) |
|
| 7 | 6 | opeq2d | |- ( ( ph /\ u = U ) -> <. ( Base ` ndx ) , u >. = <. ( Base ` ndx ) , U >. ) |
| 8 | eqidd | |- ( ( ph /\ u = U ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` y ) ^m ( Base ` x ) ) ) |
|
| 9 | 6 6 8 | mpoeq123dv | |- ( ( ph /\ u = U ) -> ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 10 | 3 | adantr | |- ( ( ph /\ u = U ) -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 11 | 9 10 | eqtr4d | |- ( ( ph /\ u = U ) -> ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = H ) |
| 12 | 11 | opeq2d | |- ( ( ph /\ u = U ) -> <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. = <. ( Hom ` ndx ) , H >. ) |
| 13 | 6 | sqxpeqd | |- ( ( ph /\ u = U ) -> ( u X. u ) = ( U X. U ) ) |
| 14 | eqidd | |- ( ( ph /\ u = U ) -> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) = ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) |
|
| 15 | 13 6 14 | mpoeq123dv | |- ( ( ph /\ u = U ) -> ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 16 | 4 | adantr | |- ( ( ph /\ u = U ) -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 17 | 15 16 | eqtr4d | |- ( ( ph /\ u = U ) -> ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) = .x. ) |
| 18 | 17 | opeq2d | |- ( ( ph /\ u = U ) -> <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. = <. ( comp ` ndx ) , .x. >. ) |
| 19 | 7 12 18 | tpeq123d | |- ( ( ph /\ u = U ) -> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 20 | 2 | elexd | |- ( ph -> U e. _V ) |
| 21 | tpex | |- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
|
| 22 | 21 | a1i | |- ( ph -> { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
| 23 | 5 19 20 22 | fvmptd2 | |- ( ph -> ( ExtStrCat ` U ) = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 24 | 1 23 | eqtrid | |- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |