This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6c4.1 | |- A e. _V |
|
| ac6c4.2 | |- B e. _V |
||
| Assertion | ac9 | |- ( A. x e. A B =/= (/) <-> X_ x e. A B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6c4.1 | |- A e. _V |
|
| 2 | ac6c4.2 | |- B e. _V |
|
| 3 | 1 2 | ac6c4 | |- ( A. x e. A B =/= (/) -> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
| 4 | n0 | |- ( X_ x e. A B =/= (/) <-> E. f f e. X_ x e. A B ) |
|
| 5 | vex | |- f e. _V |
|
| 6 | 5 | elixp | |- ( f e. X_ x e. A B <-> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
| 7 | 6 | exbii | |- ( E. f f e. X_ x e. A B <-> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
| 8 | 4 7 | bitr2i | |- ( E. f ( f Fn A /\ A. x e. A ( f ` x ) e. B ) <-> X_ x e. A B =/= (/) ) |
| 9 | 3 8 | sylib | |- ( A. x e. A B =/= (/) -> X_ x e. A B =/= (/) ) |
| 10 | ixpn0 | |- ( X_ x e. A B =/= (/) -> A. x e. A B =/= (/) ) |
|
| 11 | 9 10 | impbii | |- ( A. x e. A B =/= (/) <-> X_ x e. A B =/= (/) ) |