This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpneg | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c -u B ) = ( 1 / ( A ^c B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> A e. CC ) |
|
| 2 | simp3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> B e. CC ) |
|
| 3 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| 5 | 2 | negcld | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> -u B e. CC ) |
| 6 | cxpcl | |- ( ( A e. CC /\ -u B e. CC ) -> ( A ^c -u B ) e. CC ) |
|
| 7 | 1 5 6 | syl2anc | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c -u B ) e. CC ) |
| 8 | cxpne0 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
|
| 9 | 2 | negidd | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( B + -u B ) = 0 ) |
| 10 | 9 | oveq2d | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + -u B ) ) = ( A ^c 0 ) ) |
| 11 | simp2 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> A =/= 0 ) |
|
| 12 | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ -u B e. CC ) -> ( A ^c ( B + -u B ) ) = ( ( A ^c B ) x. ( A ^c -u B ) ) ) |
|
| 13 | 1 11 2 5 12 | syl211anc | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + -u B ) ) = ( ( A ^c B ) x. ( A ^c -u B ) ) ) |
| 14 | cxp0 | |- ( A e. CC -> ( A ^c 0 ) = 1 ) |
|
| 15 | 1 14 | syl | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c 0 ) = 1 ) |
| 16 | 10 13 15 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( ( A ^c B ) x. ( A ^c -u B ) ) = 1 ) |
| 17 | 4 7 8 16 | mvllmuld | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c -u B ) = ( 1 / ( A ^c B ) ) ) |