This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscxp | |- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( A ^c B ) ) = ( A ^c ( Re ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. RR+ /\ B e. CC ) -> B e. CC ) |
|
| 2 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 3 | 2 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 4 | 3 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> ( log ` A ) e. CC ) |
| 5 | 1 4 | mulcld | |- ( ( A e. RR+ /\ B e. CC ) -> ( B x. ( log ` A ) ) e. CC ) |
| 6 | absef | |- ( ( B x. ( log ` A ) ) e. CC -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 8 | remul2 | |- ( ( ( log ` A ) e. RR /\ B e. CC ) -> ( Re ` ( ( log ` A ) x. B ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
|
| 9 | 2 8 | sylan | |- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( ( log ` A ) x. B ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
| 10 | 1 4 | mulcomd | |- ( ( A e. RR+ /\ B e. CC ) -> ( B x. ( log ` A ) ) = ( ( log ` A ) x. B ) ) |
| 11 | 10 | fveq2d | |- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( Re ` ( ( log ` A ) x. B ) ) ) |
| 12 | recl | |- ( B e. CC -> ( Re ` B ) e. RR ) |
|
| 13 | 12 | adantl | |- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` B ) e. RR ) |
| 14 | 13 | recnd | |- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` B ) e. CC ) |
| 15 | 14 4 | mulcomd | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( Re ` B ) x. ( log ` A ) ) = ( ( log ` A ) x. ( Re ` B ) ) ) |
| 16 | 9 11 15 | 3eqtr4d | |- ( ( A e. RR+ /\ B e. CC ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( ( Re ` B ) x. ( log ` A ) ) ) |
| 17 | 16 | fveq2d | |- ( ( A e. RR+ /\ B e. CC ) -> ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 18 | 7 17 | eqtrd | |- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 19 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 20 | 19 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> A e. CC ) |
| 21 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 22 | 21 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> A =/= 0 ) |
| 23 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 24 | 20 22 1 23 | syl3anc | |- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 25 | 24 | fveq2d | |- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 26 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ ( Re ` B ) e. CC ) -> ( A ^c ( Re ` B ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
|
| 27 | 20 22 14 26 | syl3anc | |- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c ( Re ` B ) ) = ( exp ` ( ( Re ` B ) x. ( log ` A ) ) ) ) |
| 28 | 18 25 27 | 3eqtr4d | |- ( ( A e. RR+ /\ B e. CC ) -> ( abs ` ( A ^c B ) ) = ( A ^c ( Re ` B ) ) ) |