This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismred.ss | |- ( ph -> C C_ ~P X ) |
|
| ismred.ba | |- ( ph -> X e. C ) |
||
| ismred.in | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) |
||
| Assertion | ismred | |- ( ph -> C e. ( Moore ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismred.ss | |- ( ph -> C C_ ~P X ) |
|
| 2 | ismred.ba | |- ( ph -> X e. C ) |
|
| 3 | ismred.in | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) |
|
| 4 | velpw | |- ( s e. ~P C <-> s C_ C ) |
|
| 5 | 3 | 3expia | |- ( ( ph /\ s C_ C ) -> ( s =/= (/) -> |^| s e. C ) ) |
| 6 | 4 5 | sylan2b | |- ( ( ph /\ s e. ~P C ) -> ( s =/= (/) -> |^| s e. C ) ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
| 8 | ismre | |- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
|
| 9 | 1 2 7 8 | syl3anbrc | |- ( ph -> C e. ( Moore ` X ) ) |