This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isacs2.f | |- F = ( mrCls ` C ) |
|
| Assertion | acsfiel | |- ( C e. ( ACS ` X ) -> ( S e. C <-> ( S C_ X /\ A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs2.f | |- F = ( mrCls ` C ) |
|
| 2 | acsmre | |- ( C e. ( ACS ` X ) -> C e. ( Moore ` X ) ) |
|
| 3 | mress | |- ( ( C e. ( Moore ` X ) /\ S e. C ) -> S C_ X ) |
|
| 4 | 2 3 | sylan | |- ( ( C e. ( ACS ` X ) /\ S e. C ) -> S C_ X ) |
| 5 | 4 | ex | |- ( C e. ( ACS ` X ) -> ( S e. C -> S C_ X ) ) |
| 6 | 5 | pm4.71rd | |- ( C e. ( ACS ` X ) -> ( S e. C <-> ( S C_ X /\ S e. C ) ) ) |
| 7 | eleq1 | |- ( s = S -> ( s e. C <-> S e. C ) ) |
|
| 8 | pweq | |- ( s = S -> ~P s = ~P S ) |
|
| 9 | 8 | ineq1d | |- ( s = S -> ( ~P s i^i Fin ) = ( ~P S i^i Fin ) ) |
| 10 | sseq2 | |- ( s = S -> ( ( F ` y ) C_ s <-> ( F ` y ) C_ S ) ) |
|
| 11 | 9 10 | raleqbidv | |- ( s = S -> ( A. y e. ( ~P s i^i Fin ) ( F ` y ) C_ s <-> A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) |
| 12 | 7 11 | bibi12d | |- ( s = S -> ( ( s e. C <-> A. y e. ( ~P s i^i Fin ) ( F ` y ) C_ s ) <-> ( S e. C <-> A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) ) |
| 13 | 1 | isacs2 | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( s e. C <-> A. y e. ( ~P s i^i Fin ) ( F ` y ) C_ s ) ) ) |
| 14 | 13 | simprbi | |- ( C e. ( ACS ` X ) -> A. s e. ~P X ( s e. C <-> A. y e. ( ~P s i^i Fin ) ( F ` y ) C_ s ) ) |
| 15 | 14 | adantr | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> A. s e. ~P X ( s e. C <-> A. y e. ( ~P s i^i Fin ) ( F ` y ) C_ s ) ) |
| 16 | elfvdm | |- ( C e. ( ACS ` X ) -> X e. dom ACS ) |
|
| 17 | elpw2g | |- ( X e. dom ACS -> ( S e. ~P X <-> S C_ X ) ) |
|
| 18 | 16 17 | syl | |- ( C e. ( ACS ` X ) -> ( S e. ~P X <-> S C_ X ) ) |
| 19 | 18 | biimpar | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> S e. ~P X ) |
| 20 | 12 15 19 | rspcdva | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> ( S e. C <-> A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) |
| 21 | 20 | pm5.32da | |- ( C e. ( ACS ` X ) -> ( ( S C_ X /\ S e. C ) <-> ( S C_ X /\ A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) ) |
| 22 | 6 21 | bitrd | |- ( C e. ( ACS ` X ) -> ( S e. C <-> ( S C_ X /\ A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) ) |