This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | |- V = ( Base ` W ) |
|
| cssss.c | |- C = ( ClSubSp ` W ) |
||
| ocvcss.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | iscss2 | |- ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | |- V = ( Base ` W ) |
|
| 2 | cssss.c | |- C = ( ClSubSp ` W ) |
|
| 3 | ocvcss.o | |- ._|_ = ( ocv ` W ) |
|
| 4 | 3 2 | iscss | |- ( W e. PreHil -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 5 | 4 | adantr | |- ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 6 | 1 3 | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 7 | eqss | |- ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( S C_ ( ._|_ ` ( ._|_ ` S ) ) /\ ( ._|_ ` ( ._|_ ` S ) ) C_ S ) ) |
|
| 8 | 7 | baib | |- ( S C_ ( ._|_ ` ( ._|_ ` S ) ) -> ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) ) |
| 9 | 6 8 | syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( S = ( ._|_ ` ( ._|_ ` S ) ) <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) ) |
| 10 | 5 9 | bitrd | |- ( ( W e. PreHil /\ S C_ V ) -> ( S e. C <-> ( ._|_ ` ( ._|_ ` S ) ) C_ S ) ) |