This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018) (Revised by AV, 7-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshweqrep | |- ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = 0 -> ( x x. L ) = ( 0 x. L ) ) |
|
| 2 | 1 | oveq2d | |- ( x = 0 -> ( I + ( x x. L ) ) = ( I + ( 0 x. L ) ) ) |
| 3 | 2 | fvoveq1d | |- ( x = 0 -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) |
| 4 | 3 | eqeq2d | |- ( x = 0 -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) |
| 5 | 4 | imbi2d | |- ( x = 0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 6 | oveq1 | |- ( x = y -> ( x x. L ) = ( y x. L ) ) |
|
| 7 | 6 | oveq2d | |- ( x = y -> ( I + ( x x. L ) ) = ( I + ( y x. L ) ) ) |
| 8 | 7 | fvoveq1d | |- ( x = y -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
| 9 | 8 | eqeq2d | |- ( x = y -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) |
| 10 | 9 | imbi2d | |- ( x = y -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 11 | oveq1 | |- ( x = ( y + 1 ) -> ( x x. L ) = ( ( y + 1 ) x. L ) ) |
|
| 12 | 11 | oveq2d | |- ( x = ( y + 1 ) -> ( I + ( x x. L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) |
| 13 | 12 | fvoveq1d | |- ( x = ( y + 1 ) -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 14 | 13 | eqeq2d | |- ( x = ( y + 1 ) -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 16 | oveq1 | |- ( x = j -> ( x x. L ) = ( j x. L ) ) |
|
| 17 | 16 | oveq2d | |- ( x = j -> ( I + ( x x. L ) ) = ( I + ( j x. L ) ) ) |
| 18 | 17 | fvoveq1d | |- ( x = j -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) |
| 19 | 18 | eqeq2d | |- ( x = j -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = j -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 21 | zcn | |- ( L e. ZZ -> L e. CC ) |
|
| 22 | 21 | mul02d | |- ( L e. ZZ -> ( 0 x. L ) = 0 ) |
| 23 | 22 | adantl | |- ( ( W e. Word V /\ L e. ZZ ) -> ( 0 x. L ) = 0 ) |
| 24 | 23 | adantr | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( 0 x. L ) = 0 ) |
| 25 | 24 | oveq2d | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = ( I + 0 ) ) |
| 26 | elfzoelz | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) |
|
| 27 | 26 | zcnd | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. CC ) |
| 28 | 27 | addridd | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 0 ) = I ) |
| 29 | 28 | ad2antll | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + 0 ) = I ) |
| 30 | 25 29 | eqtrd | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = I ) |
| 31 | 30 | oveq1d | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) = ( I mod ( # ` W ) ) ) |
| 32 | zmodidfzoimp | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I mod ( # ` W ) ) = I ) |
|
| 33 | 32 | ad2antll | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I mod ( # ` W ) ) = I ) |
| 34 | 31 33 | eqtr2d | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> I = ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) |
| 35 | 34 | fveq2d | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) |
| 36 | fveq1 | |- ( W = ( W cyclShift L ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
|
| 37 | 36 | eqcoms | |- ( ( W cyclShift L ) = W -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
| 38 | 37 | ad2antrl | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
| 39 | 38 | adantl | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
| 40 | simprll | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> W e. Word V ) |
|
| 41 | simprlr | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> L e. ZZ ) |
|
| 42 | elfzo0 | |- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
|
| 43 | nn0z | |- ( I e. NN0 -> I e. ZZ ) |
|
| 44 | 43 | adantr | |- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> I e. ZZ ) |
| 45 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 46 | zmulcl | |- ( ( y e. ZZ /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) |
|
| 47 | 45 46 | sylan | |- ( ( y e. NN0 /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) |
| 48 | 47 | ancoms | |- ( ( L e. ZZ /\ y e. NN0 ) -> ( y x. L ) e. ZZ ) |
| 49 | zaddcl | |- ( ( I e. ZZ /\ ( y x. L ) e. ZZ ) -> ( I + ( y x. L ) ) e. ZZ ) |
|
| 50 | 44 48 49 | syl2an | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( I + ( y x. L ) ) e. ZZ ) |
| 51 | simplr | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( # ` W ) e. NN ) |
|
| 52 | 50 51 | jca | |- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 53 | 52 | ex | |- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 54 | 53 | 3adant3 | |- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 55 | 42 54 | sylbi | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 56 | 55 | adantl | |- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 57 | 56 | expd | |- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
| 58 | 57 | com12 | |- ( L e. ZZ -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
| 59 | 58 | adantl | |- ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
| 60 | 59 | imp | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 61 | 60 | impcom | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 62 | zmodfzo | |- ( ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 63 | 61 62 | syl | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 64 | cshwidxmod | |- ( ( W e. Word V /\ L e. ZZ /\ ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) |
|
| 65 | 40 41 63 64 | syl3anc | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) |
| 66 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 67 | zre | |- ( L e. ZZ -> L e. RR ) |
|
| 68 | nn0re | |- ( y e. NN0 -> y e. RR ) |
|
| 69 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 70 | remulcl | |- ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. RR ) |
|
| 71 | 70 | ancoms | |- ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. RR ) |
| 72 | readdcl | |- ( ( I e. RR /\ ( y x. L ) e. RR ) -> ( I + ( y x. L ) ) e. RR ) |
|
| 73 | 71 72 | sylan2 | |- ( ( I e. RR /\ ( L e. RR /\ y e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) |
| 74 | 73 | ancoms | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( y x. L ) ) e. RR ) |
| 75 | 74 | adantl | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) |
| 76 | simprll | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> L e. RR ) |
|
| 77 | simpl | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( # ` W ) e. RR+ ) |
|
| 78 | modaddmod | |- ( ( ( I + ( y x. L ) ) e. RR /\ L e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) |
|
| 79 | 75 76 77 78 | syl3anc | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) |
| 80 | recn | |- ( I e. RR -> I e. CC ) |
|
| 81 | 80 | adantl | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> I e. CC ) |
| 82 | 70 | recnd | |- ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. CC ) |
| 83 | 82 | ancoms | |- ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. CC ) |
| 84 | 83 | adantr | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( y x. L ) e. CC ) |
| 85 | recn | |- ( L e. RR -> L e. CC ) |
|
| 86 | 85 | adantr | |- ( ( L e. RR /\ y e. RR ) -> L e. CC ) |
| 87 | 86 | adantr | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> L e. CC ) |
| 88 | 81 84 87 | addassd | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y x. L ) + L ) ) ) |
| 89 | recn | |- ( y e. RR -> y e. CC ) |
|
| 90 | 89 | adantl | |- ( ( L e. RR /\ y e. RR ) -> y e. CC ) |
| 91 | 1cnd | |- ( ( L e. RR /\ y e. RR ) -> 1 e. CC ) |
|
| 92 | 90 91 86 | adddird | |- ( ( L e. RR /\ y e. RR ) -> ( ( y + 1 ) x. L ) = ( ( y x. L ) + ( 1 x. L ) ) ) |
| 93 | 85 | mullidd | |- ( L e. RR -> ( 1 x. L ) = L ) |
| 94 | 93 | adantr | |- ( ( L e. RR /\ y e. RR ) -> ( 1 x. L ) = L ) |
| 95 | 94 | oveq2d | |- ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + ( 1 x. L ) ) = ( ( y x. L ) + L ) ) |
| 96 | 92 95 | eqtr2d | |- ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) |
| 97 | 96 | adantr | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) |
| 98 | 97 | oveq2d | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( ( y x. L ) + L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) |
| 99 | 88 98 | eqtrd | |- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) |
| 100 | 99 | adantl | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) |
| 101 | 100 | oveq1d | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
| 102 | 79 101 | eqtrd | |- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
| 103 | 102 | ex | |- ( ( # ` W ) e. RR+ -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 104 | 69 103 | syl | |- ( ( # ` W ) e. NN -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 105 | 104 | expd | |- ( ( # ` W ) e. NN -> ( ( L e. RR /\ y e. RR ) -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 106 | 105 | com12 | |- ( ( L e. RR /\ y e. RR ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 107 | 67 68 106 | syl2an | |- ( ( L e. ZZ /\ y e. NN0 ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 108 | 107 | com13 | |- ( I e. RR -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 109 | 66 108 | syl | |- ( I e. NN0 -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 110 | 109 | imp | |- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 111 | 110 | 3adant3 | |- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 112 | 42 111 | sylbi | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 113 | 112 | expd | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 114 | 113 | adantld | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 115 | 114 | adantl | |- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 116 | 115 | impcom | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 117 | 116 | impcom | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
| 118 | 117 | fveq2d | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 119 | 39 65 118 | 3eqtrd | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
| 120 | 119 | eqeq2d | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 121 | 120 | biimpd | |- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
| 122 | 121 | ex | |- ( y e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 123 | 122 | a2d | |- ( y e. NN0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
| 124 | 5 10 15 20 35 123 | nn0ind | |- ( j e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
| 125 | 124 | com12 | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( j e. NN0 -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
| 126 | 125 | ralrimiv | |- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) |
| 127 | 126 | ex | |- ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |