This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by 1 position results in the word itself, the word is a "repeated symbol word". Remark: also "valid" for an empty word! (Contributed by AV, 8-Nov-2018) (Proof shortened by AV, 10-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshw1repsw | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshw1 | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
|
| 2 | repswsymballbi | |- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
|
| 3 | 2 | bicomd | |- ( W e. Word V -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 4 | 3 | adantr | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 5 | 1 4 | mpbid | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |