This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshimadifsn | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | |- ( F e. Word S -> F Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 2 | fnfun | |- ( F Fn ( 0 ..^ ( # ` F ) ) -> Fun F ) |
|
| 3 | 1 2 | syl | |- ( F e. Word S -> Fun F ) |
| 4 | 3 | 3ad2ant1 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> Fun F ) |
| 5 | wrddm | |- ( F e. Word S -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 6 | difssd | |- ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ ( # ` F ) ) \ { J } ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 7 | oveq2 | |- ( N = ( # ` F ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 8 | 7 | difeq1d | |- ( N = ( # ` F ) -> ( ( 0 ..^ N ) \ { J } ) = ( ( 0 ..^ ( # ` F ) ) \ { J } ) ) |
| 9 | 8 | adantl | |- ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ N ) \ { J } ) = ( ( 0 ..^ ( # ` F ) ) \ { J } ) ) |
| 10 | simpl | |- ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 11 | 6 9 10 | 3sstr4d | |- ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) |
| 12 | 11 | a1d | |- ( ( dom F = ( 0 ..^ ( # ` F ) ) /\ N = ( # ` F ) ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) |
| 13 | 12 | ex | |- ( dom F = ( 0 ..^ ( # ` F ) ) -> ( N = ( # ` F ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) ) |
| 14 | 5 13 | syl | |- ( F e. Word S -> ( N = ( # ` F ) -> ( J e. ( 0 ..^ N ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) ) |
| 15 | 14 | 3imp | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( 0 ..^ N ) \ { J } ) C_ dom F ) |
| 16 | 4 15 | jca | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun F /\ ( ( 0 ..^ N ) \ { J } ) C_ dom F ) ) |
| 17 | dfimafn | |- ( ( Fun F /\ ( ( 0 ..^ N ) \ { J } ) C_ dom F ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } ) |
|
| 18 | 16 17 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } ) |
| 19 | modsumfzodifsn | |- ( ( J e. ( 0 ..^ N ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) |
|
| 20 | 19 | 3ad2antl3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) |
| 21 | oveq2 | |- ( ( # ` F ) = N -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) |
|
| 22 | 21 | eqcoms | |- ( N = ( # ` F ) -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) |
| 23 | 22 | eleq1d | |- ( N = ( # ` F ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) |
| 24 | 23 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) |
| 25 | 24 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) <-> ( ( y + J ) mod N ) e. ( ( 0 ..^ N ) \ { J } ) ) ) |
| 26 | 20 25 | mpbird | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( ( y + J ) mod ( # ` F ) ) e. ( ( 0 ..^ N ) \ { J } ) ) |
| 27 | modfzo0difsn | |- ( ( J e. ( 0 ..^ N ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) |
|
| 28 | 27 | 3ad2antl3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) |
| 29 | oveq2 | |- ( N = ( # ` F ) -> ( ( y + J ) mod N ) = ( ( y + J ) mod ( # ` F ) ) ) |
|
| 30 | 29 | eqcomd | |- ( N = ( # ` F ) -> ( ( y + J ) mod ( # ` F ) ) = ( ( y + J ) mod N ) ) |
| 31 | 30 | eqeq2d | |- ( N = ( # ` F ) -> ( x = ( ( y + J ) mod ( # ` F ) ) <-> x = ( ( y + J ) mod N ) ) ) |
| 32 | 31 | rexbidv | |- ( N = ( # ` F ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) |
| 33 | 32 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) |
| 34 | 33 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> ( E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) <-> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod N ) ) ) |
| 35 | 28 34 | mpbird | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( ( 0 ..^ N ) \ { J } ) ) -> E. y e. ( 1 ..^ N ) x = ( ( y + J ) mod ( # ` F ) ) ) |
| 36 | fveq2 | |- ( x = ( ( y + J ) mod ( # ` F ) ) -> ( F ` x ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) |
|
| 37 | 36 | 3ad2ant3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` x ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) |
| 38 | simpl1 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> F e. Word S ) |
|
| 39 | elfzoelz | |- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
|
| 40 | 39 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. ZZ ) |
| 41 | 40 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> J e. ZZ ) |
| 42 | oveq2 | |- ( N = ( # ` F ) -> ( 1 ..^ N ) = ( 1 ..^ ( # ` F ) ) ) |
|
| 43 | 42 | eleq2d | |- ( N = ( # ` F ) -> ( y e. ( 1 ..^ N ) <-> y e. ( 1 ..^ ( # ` F ) ) ) ) |
| 44 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 45 | 44 | sseli | |- ( y e. ( 1 ..^ ( # ` F ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) |
| 46 | 43 45 | biimtrdi | |- ( N = ( # ` F ) -> ( y e. ( 1 ..^ N ) -> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 47 | 46 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 1 ..^ N ) -> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 48 | 47 | imp | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) |
| 49 | cshwidxmod | |- ( ( F e. Word S /\ J e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift J ) ` y ) = ( F ` ( ( y + J ) mod ( # ` F ) ) ) ) |
|
| 50 | 49 | eqcomd | |- ( ( F e. Word S /\ J e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) |
| 51 | 38 41 48 50 | syl3anc | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) |
| 52 | 51 | 3adant3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` ( ( y + J ) mod ( # ` F ) ) ) = ( ( F cyclShift J ) ` y ) ) |
| 53 | 37 52 | eqtrd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( F ` x ) = ( ( F cyclShift J ) ` y ) ) |
| 54 | 53 | eqeq1d | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 1 ..^ N ) /\ x = ( ( y + J ) mod ( # ` F ) ) ) -> ( ( F ` x ) = z <-> ( ( F cyclShift J ) ` y ) = z ) ) |
| 55 | 26 35 54 | rexxfrd2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z <-> E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z ) ) |
| 56 | 55 | abbidv | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) |
| 57 | 39 | anim2i | |- ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 58 | 57 | 3adant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 59 | cshwfn | |- ( ( F e. Word S /\ J e. ZZ ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 60 | 58 59 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 61 | fnfun | |- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift J ) ) |
|
| 62 | 61 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift J ) ) |
| 63 | 42 44 | eqsstrdi | |- ( N = ( # ` F ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 64 | 63 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 65 | 64 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 66 | fndm | |- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 67 | 66 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
| 68 | 65 67 | sseqtrrd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) |
| 69 | 62 68 | jca | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 70 | 60 69 | mpdan | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 71 | dfimafn | |- ( ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) |
|
| 72 | 70 71 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. y e. ( 1 ..^ N ) ( ( F cyclShift J ) ` y ) = z } ) |
| 73 | 56 72 | eqtr4d | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( ( 0 ..^ N ) \ { J } ) ( F ` x ) = z } = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |
| 74 | 18 73 | eqtrd | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |