This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshimadifsn0 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshimadifsn | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |
|
| 2 | elfzoel2 | |- ( J e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 3 | elfzom1elp1fzo1 | |- ( ( N e. ZZ /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
|
| 4 | 3 | ex | |- ( N e. ZZ -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 5 | 2 4 | syl | |- ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 7 | 6 | imp | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
| 8 | elfzo1elm1fzo0 | |- ( x e. ( 1 ..^ N ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
|
| 9 | 8 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 10 | oveq1 | |- ( y = ( x - 1 ) -> ( y + 1 ) = ( ( x - 1 ) + 1 ) ) |
|
| 11 | 10 | eqeq2d | |- ( y = ( x - 1 ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) |
| 12 | 11 | adantl | |- ( ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) /\ y = ( x - 1 ) ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) |
| 13 | elfzoelz | |- ( x e. ( 1 ..^ N ) -> x e. ZZ ) |
|
| 14 | 13 | zcnd | |- ( x e. ( 1 ..^ N ) -> x e. CC ) |
| 15 | npcan1 | |- ( x e. CC -> ( ( x - 1 ) + 1 ) = x ) |
|
| 16 | 14 15 | syl | |- ( x e. ( 1 ..^ N ) -> ( ( x - 1 ) + 1 ) = x ) |
| 17 | 16 | eqcomd | |- ( x e. ( 1 ..^ N ) -> x = ( ( x - 1 ) + 1 ) ) |
| 18 | 17 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> x = ( ( x - 1 ) + 1 ) ) |
| 19 | 9 12 18 | rspcedvd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> E. y e. ( 0 ..^ ( N - 1 ) ) x = ( y + 1 ) ) |
| 20 | fveq2 | |- ( x = ( y + 1 ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) |
|
| 21 | 20 | 3ad2ant3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) |
| 22 | elfzoelz | |- ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ZZ ) |
|
| 23 | 22 | zcnd | |- ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. CC ) |
| 24 | 23 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. CC ) |
| 25 | elfzoelz | |- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
|
| 26 | 25 | zcnd | |- ( J e. ( 0 ..^ N ) -> J e. CC ) |
| 27 | 26 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. CC ) |
| 28 | 27 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. CC ) |
| 29 | 1cnd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. CC ) |
|
| 30 | add32r | |- ( ( y e. CC /\ J e. CC /\ 1 e. CC ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) |
|
| 31 | 24 28 29 30 | syl3anc | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) |
| 32 | 31 | fvoveq1d | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
| 33 | simpl1 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> F e. Word S ) |
|
| 34 | 25 | peano2zd | |- ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ZZ ) |
| 35 | 34 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( J + 1 ) e. ZZ ) |
| 36 | 35 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( J + 1 ) e. ZZ ) |
| 37 | fzossrbm1 | |- ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
|
| 38 | 2 37 | syl | |- ( J e. ( 0 ..^ N ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 39 | 38 | sseld | |- ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) |
| 40 | 39 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) |
| 41 | 40 | imp | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ N ) ) |
| 42 | oveq2 | |- ( N = ( # ` F ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 43 | 42 | eleq2d | |- ( N = ( # ` F ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 44 | 43 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 45 | 44 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 46 | 41 45 | mpbid | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) |
| 47 | cshwidxmod | |- ( ( F e. Word S /\ ( J + 1 ) e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) |
|
| 48 | 33 36 46 47 | syl3anc | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) |
| 49 | 25 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. ZZ ) |
| 50 | 49 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. ZZ ) |
| 51 | fzo0ss1 | |- ( 1 ..^ N ) C_ ( 0 ..^ N ) |
|
| 52 | 2 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> N e. ZZ ) |
| 53 | 52 3 | sylan | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
| 54 | 51 53 | sselid | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ N ) ) |
| 55 | 42 | eleq2d | |- ( N = ( # ` F ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 56 | 55 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 57 | 56 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 58 | 54 57 | mpbid | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 59 | cshwidxmod | |- ( ( F e. Word S /\ J e. ZZ /\ ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
|
| 60 | 33 50 58 59 | syl3anc | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
| 61 | 32 48 60 | 3eqtr4rd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 62 | 61 | 3adant3 | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 63 | 21 62 | eqtrd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 64 | 63 | eqeq1d | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( ( F cyclShift J ) ` x ) = z <-> ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) |
| 65 | 7 19 64 | rexxfrd2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z <-> E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) |
| 66 | 65 | abbidv | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
| 67 | 25 | anim2i | |- ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 68 | 67 | 3adant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 69 | cshwfn | |- ( ( F e. Word S /\ J e. ZZ ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 70 | 68 69 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 71 | fnfun | |- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift J ) ) |
|
| 72 | 71 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift J ) ) |
| 73 | 42 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) |
| 74 | 51 73 | sseqtrid | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 75 | 74 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 76 | fndm | |- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 77 | 76 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
| 78 | 75 77 | sseqtrrd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) |
| 79 | 72 78 | jca | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 80 | 70 79 | mpdan | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 81 | dfimafn | |- ( ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) |
|
| 82 | 80 81 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) |
| 83 | 34 | anim2i | |- ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) |
| 84 | 83 | 3adant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) |
| 85 | cshwfn | |- ( ( F e. Word S /\ ( J + 1 ) e. ZZ ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 86 | 84 85 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 87 | fnfun | |- ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) |
|
| 88 | 87 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) |
| 89 | 38 | 3ad2ant3 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 90 | oveq2 | |- ( ( # ` F ) = N -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
|
| 91 | 90 | eqcoms | |- ( N = ( # ` F ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
| 92 | 91 | 3ad2ant2 | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
| 93 | 89 92 | sseqtrrd | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 94 | 93 | adantr | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 95 | fndm | |- ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 96 | 95 | adantl | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 97 | 94 96 | sseqtrrd | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) |
| 98 | 88 97 | jca | |- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) |
| 99 | 86 98 | mpdan | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) |
| 100 | dfimafn | |- ( ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
|
| 101 | 99 100 | syl | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
| 102 | 66 82 101 | 3eqtr4d | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
| 103 | 1 102 | eqtrd | |- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |