This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshimadifsn | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | ⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 2 | fnfun | ⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → Fun 𝐹 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ Word 𝑆 → Fun 𝐹 ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → Fun 𝐹 ) |
| 5 | wrddm | ⊢ ( 𝐹 ∈ Word 𝑆 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | difssd | ⊢ ( ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∖ { 𝐽 } ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 7 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 8 | 7 | difeq1d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) = ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∖ { 𝐽 } ) ) |
| 9 | 8 | adantl | ⊢ ( ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) = ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∖ { 𝐽 } ) ) |
| 10 | simpl | ⊢ ( ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ) → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 11 | 6 9 10 | 3sstr4d | ⊢ ( ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) |
| 12 | 11 | a1d | ⊢ ( ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) ) |
| 13 | 12 | ex | ⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) ) ) |
| 14 | 5 13 | syl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) ) ) |
| 15 | 14 | 3imp | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) |
| 16 | 4 15 | jca | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( Fun 𝐹 ∧ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) ) |
| 17 | dfimafn | ⊢ ( ( Fun 𝐹 ∧ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ⊆ dom 𝐹 ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ( 𝐹 ‘ 𝑥 ) = 𝑧 } ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ( 𝐹 ‘ 𝑥 ) = 𝑧 } ) |
| 19 | modsumfzodifsn | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) | |
| 20 | 19 | 3ad2antl3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 21 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) | |
| 22 | 21 | eqcoms | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ↔ ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ↔ ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ↔ ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) ) |
| 26 | 20 25 | mpbird | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 27 | modfzo0difsn | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) → ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) | |
| 28 | 27 | 3ad2antl3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) → ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) |
| 29 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( 𝑦 + 𝐽 ) mod 𝑁 ) = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) | |
| 30 | 29 | eqcomd | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) |
| 31 | 30 | eqeq2d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) ) |
| 32 | 31 | rexbidv | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) ) |
| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) → ( ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod 𝑁 ) ) ) |
| 35 | 28 34 | mpbird | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) → ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 37 | 36 | 3ad2ant3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 38 | simpl1 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → 𝐹 ∈ Word 𝑆 ) | |
| 39 | elfzoelz | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) | |
| 40 | 39 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → 𝐽 ∈ ℤ ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → 𝐽 ∈ ℤ ) |
| 42 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 1 ..^ 𝑁 ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 43 | 42 | eleq2d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝑦 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 44 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 45 | 44 | sseli | ⊢ ( 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 46 | 43 45 | biimtrdi | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 49 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 50 | 49 | eqcomd | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) ) |
| 51 | 38 41 48 50 | syl3anc | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) ) |
| 53 | 37 52 | eqtrd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) ) |
| 54 | 53 | eqeq1d | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 = ( ( 𝑦 + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑧 ↔ ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = 𝑧 ) ) |
| 55 | 26 35 54 | rexxfrd2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ( 𝐹 ‘ 𝑥 ) = 𝑧 ↔ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = 𝑧 ) ) |
| 56 | 55 | abbidv | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ( 𝐹 ‘ 𝑥 ) = 𝑧 } = { 𝑧 ∣ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = 𝑧 } ) |
| 57 | 39 | anim2i | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) ) |
| 58 | 57 | 3adant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) ) |
| 59 | cshwfn | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) → ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 61 | fnfun | ⊢ ( ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → Fun ( 𝐹 cyclShift 𝐽 ) ) | |
| 62 | 61 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun ( 𝐹 cyclShift 𝐽 ) ) |
| 63 | 42 44 | eqsstrdi | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 64 | 63 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 66 | fndm | ⊢ ( ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → dom ( 𝐹 cyclShift 𝐽 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 67 | 66 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom ( 𝐹 cyclShift 𝐽 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 68 | 65 67 | sseqtrrd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) |
| 69 | 62 68 | jca | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) ) |
| 70 | 60 69 | mpdan | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) ) |
| 71 | dfimafn | ⊢ ( ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) → ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = 𝑧 } ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑦 ) = 𝑧 } ) |
| 73 | 56 72 | eqtr4d | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ( 𝐹 ‘ 𝑥 ) = 𝑧 } = ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) ) |
| 74 | 18 73 | eqtrd | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) ) |