This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) |
|
| cphsca.k | |- K = ( Base ` F ) |
||
| Assertion | cphqss | |- ( W e. CPreHil -> QQ C_ K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) |
|
| 2 | cphsca.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 4 | 1 2 | cphsca | |- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
| 5 | cphlvec | |- ( W e. CPreHil -> W e. LVec ) |
|
| 6 | 1 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 7 | 5 6 | syl | |- ( W e. CPreHil -> F e. DivRing ) |
| 8 | 4 7 | eqeltrrd | |- ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing ) |
| 9 | qsssubdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K ) |
|
| 10 | 3 8 9 | syl2anc | |- ( W e. CPreHil -> QQ C_ K ) |