This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| Assertion | cphorthcom | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 6 | 4 1 2 5 | iporthcom | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 7 | 3 6 | syl3an1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 8 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 9 | 4 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 10 | 8 9 | syl | |- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 12 | 11 | eqeq2d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( A ., B ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 13 | 11 | eqeq2d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( B ., A ) = 0 <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 14 | 7 12 13 | 3bitr4d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |