This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphbas and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tcphex.v | |- V = ( Base ` W ) |
|
| Assertion | tcphex | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphex.v | |- V = ( Base ` W ) |
|
| 2 | eqid | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
|
| 3 | fvrn0 | |- ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) |
|
| 4 | 3 | a1i | |- ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) ) |
| 5 | 2 4 | fmpti | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) |
| 6 | 1 | fvexi | |- V e. _V |
| 7 | cnex | |- CC e. _V |
|
| 8 | sqrtf | |- sqrt : CC --> CC |
|
| 9 | frn | |- ( sqrt : CC --> CC -> ran sqrt C_ CC ) |
|
| 10 | 8 9 | ax-mp | |- ran sqrt C_ CC |
| 11 | 7 10 | ssexi | |- ran sqrt e. _V |
| 12 | p0ex | |- { (/) } e. _V |
|
| 13 | 11 12 | unex | |- ( ran sqrt u. { (/) } ) e. _V |
| 14 | fex2 | |- ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) /\ V e. _V /\ ( ran sqrt u. { (/) } ) e. _V ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V ) |
|
| 15 | 5 6 13 14 | mp3an | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V |