This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex that collapses a proper class into a set of minimum rank. The wff ph can be thought of as ph ( x , y ) . Scheme "Collection Principle" of Jech p. 72. (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cp | |- E. w A. x e. z ( E. y ph -> E. y e. w ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- z e. _V |
|
| 2 | 1 | cplem2 | |- E. w A. x e. z ( { y | ph } =/= (/) -> ( { y | ph } i^i w ) =/= (/) ) |
| 3 | abn0 | |- ( { y | ph } =/= (/) <-> E. y ph ) |
|
| 4 | elin | |- ( y e. ( { y | ph } i^i w ) <-> ( y e. { y | ph } /\ y e. w ) ) |
|
| 5 | abid | |- ( y e. { y | ph } <-> ph ) |
|
| 6 | 5 | anbi1i | |- ( ( y e. { y | ph } /\ y e. w ) <-> ( ph /\ y e. w ) ) |
| 7 | ancom | |- ( ( ph /\ y e. w ) <-> ( y e. w /\ ph ) ) |
|
| 8 | 4 6 7 | 3bitri | |- ( y e. ( { y | ph } i^i w ) <-> ( y e. w /\ ph ) ) |
| 9 | 8 | exbii | |- ( E. y y e. ( { y | ph } i^i w ) <-> E. y ( y e. w /\ ph ) ) |
| 10 | nfab1 | |- F/_ y { y | ph } |
|
| 11 | nfcv | |- F/_ y w |
|
| 12 | 10 11 | nfin | |- F/_ y ( { y | ph } i^i w ) |
| 13 | 12 | n0f | |- ( ( { y | ph } i^i w ) =/= (/) <-> E. y y e. ( { y | ph } i^i w ) ) |
| 14 | df-rex | |- ( E. y e. w ph <-> E. y ( y e. w /\ ph ) ) |
|
| 15 | 9 13 14 | 3bitr4i | |- ( ( { y | ph } i^i w ) =/= (/) <-> E. y e. w ph ) |
| 16 | 3 15 | imbi12i | |- ( ( { y | ph } =/= (/) -> ( { y | ph } i^i w ) =/= (/) ) <-> ( E. y ph -> E. y e. w ph ) ) |
| 17 | 16 | ralbii | |- ( A. x e. z ( { y | ph } =/= (/) -> ( { y | ph } i^i w ) =/= (/) ) <-> A. x e. z ( E. y ph -> E. y e. w ph ) ) |
| 18 | 17 | exbii | |- ( E. w A. x e. z ( { y | ph } =/= (/) -> ( { y | ph } i^i w ) =/= (/) ) <-> E. w A. x e. z ( E. y ph -> E. y e. w ph ) ) |
| 19 | 2 18 | mpbi | |- E. w A. x e. z ( E. y ph -> E. y e. w ph ) |