This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cplem2.1 | |- A e. _V |
|
| Assertion | cplem2 | |- E. y A. x e. A ( B =/= (/) -> ( B i^i y ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem2.1 | |- A e. _V |
|
| 2 | scottex | |- { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } e. _V |
|
| 3 | 1 2 | iunex | |- U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } e. _V |
| 4 | nfiu1 | |- F/_ x U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } |
|
| 5 | 4 | nfeq2 | |- F/ x y = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } |
| 6 | ineq2 | |- ( y = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } -> ( B i^i y ) = ( B i^i U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } ) ) |
|
| 7 | 6 | neeq1d | |- ( y = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } -> ( ( B i^i y ) =/= (/) <-> ( B i^i U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } ) =/= (/) ) ) |
| 8 | 7 | imbi2d | |- ( y = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } -> ( ( B =/= (/) -> ( B i^i y ) =/= (/) ) <-> ( B =/= (/) -> ( B i^i U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } ) =/= (/) ) ) ) |
| 9 | 5 8 | ralbid | |- ( y = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } -> ( A. x e. A ( B =/= (/) -> ( B i^i y ) =/= (/) ) <-> A. x e. A ( B =/= (/) -> ( B i^i U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } ) =/= (/) ) ) ) |
| 10 | eqid | |- { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } = { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } |
|
| 11 | eqid | |- U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } = U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } |
|
| 12 | 10 11 | cplem1 | |- A. x e. A ( B =/= (/) -> ( B i^i U_ x e. A { z e. B | A. w e. B ( rank ` z ) C_ ( rank ` w ) } ) =/= (/) ) |
| 13 | 3 9 12 | ceqsexv2d | |- E. y A. x e. A ( B =/= (/) -> ( B i^i y ) =/= (/) ) |