This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. This version of n0 requires only that x not be free in, rather than not occur in, A . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0f.1 | |- F/_ x A |
|
| Assertion | n0f | |- ( A =/= (/) <-> E. x x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0f.1 | |- F/_ x A |
|
| 2 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 3 | 1 | neq0f | |- ( -. A = (/) <-> E. x x e. A ) |
| 4 | 2 3 | bitri | |- ( A =/= (/) <-> E. x x e. A ) |