This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 ), derived from the Collection Principle cp . Its strength lies in the rather profound fact that ph ( x , y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnd | |- ( A. x e. z E. y ph -> E. w A. x e. z E. y e. w ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cp | |- E. w A. x e. z ( E. y ph -> E. y e. w ph ) |
|
| 2 | ralim | |- ( A. x e. z ( E. y ph -> E. y e. w ph ) -> ( A. x e. z E. y ph -> A. x e. z E. y e. w ph ) ) |
|
| 3 | 1 2 | eximii | |- E. w ( A. x e. z E. y ph -> A. x e. z E. y e. w ph ) |
| 4 | 3 | 19.37iv | |- ( A. x e. z E. y ph -> E. w A. x e. z E. y e. w ph ) |