This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex that collapses a proper class into a set of minimum rank. The wff ph can be thought of as ph ( x , y ) . Scheme "Collection Principle" of Jech p. 72. (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cp | ⊢ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑧 ∈ V | |
| 2 | 1 | cplem2 | ⊢ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) |
| 3 | abn0 | ⊢ ( { 𝑦 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 𝜑 ) | |
| 4 | elin | ⊢ ( 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝑦 ∈ 𝑤 ) ) | |
| 5 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝑦 ∈ 𝑤 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝑤 ) ) |
| 7 | ancom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) | |
| 8 | 4 6 7 | 3bitri | ⊢ ( 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) |
| 10 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } | |
| 11 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 12 | 10 11 | nfin | ⊢ Ⅎ 𝑦 ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) |
| 13 | 12 | n0f | ⊢ ( ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ) |
| 14 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑤 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ 𝜑 ) ) | |
| 15 | 9 13 14 | 3bitr4i | ⊢ ( ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑤 𝜑 ) |
| 16 | 3 15 | imbi12i | ⊢ ( ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( { 𝑦 ∣ 𝜑 } ≠ ∅ → ( { 𝑦 ∣ 𝜑 } ∩ 𝑤 ) ≠ ∅ ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) ) |
| 19 | 2 18 | mpbi | ⊢ ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → ∃ 𝑦 ∈ 𝑤 𝜑 ) |