This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of Jech p. 72, is a set. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | scottex | |- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | eleq1 | |- ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) |
|
| 3 | 1 2 | mpbiri | |- ( A = (/) -> A e. _V ) |
| 4 | rabexg | |- ( A e. _V -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
|
| 5 | 3 4 | syl | |- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
| 6 | neq0 | |- ( -. A = (/) <-> E. y y e. A ) |
|
| 7 | nfra1 | |- F/ y A. y e. A ( rank ` x ) C_ ( rank ` y ) |
|
| 8 | nfcv | |- F/_ y A |
|
| 9 | 7 8 | nfrabw | |- F/_ y { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } |
| 10 | 9 | nfel1 | |- F/ y { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V |
| 11 | rsp | |- ( A. y e. A ( rank ` x ) C_ ( rank ` y ) -> ( y e. A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
|
| 12 | 11 | com12 | |- ( y e. A -> ( A. y e. A ( rank ` x ) C_ ( rank ` y ) -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 13 | 12 | adantr | |- ( ( y e. A /\ x e. A ) -> ( A. y e. A ( rank ` x ) C_ ( rank ` y ) -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 14 | 13 | ss2rabdv | |- ( y e. A -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } C_ { x e. A | ( rank ` x ) C_ ( rank ` y ) } ) |
| 15 | rankon | |- ( rank ` y ) e. On |
|
| 16 | fveq2 | |- ( x = w -> ( rank ` x ) = ( rank ` w ) ) |
|
| 17 | 16 | sseq1d | |- ( x = w -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` w ) C_ ( rank ` y ) ) ) |
| 18 | 17 | elrab | |- ( w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } <-> ( w e. A /\ ( rank ` w ) C_ ( rank ` y ) ) ) |
| 19 | 18 | simprbi | |- ( w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } -> ( rank ` w ) C_ ( rank ` y ) ) |
| 20 | 19 | rgen | |- A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ ( rank ` y ) |
| 21 | sseq2 | |- ( z = ( rank ` y ) -> ( ( rank ` w ) C_ z <-> ( rank ` w ) C_ ( rank ` y ) ) ) |
|
| 22 | 21 | ralbidv | |- ( z = ( rank ` y ) -> ( A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ z <-> A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ ( rank ` y ) ) ) |
| 23 | 22 | rspcev | |- ( ( ( rank ` y ) e. On /\ A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ ( rank ` y ) ) -> E. z e. On A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ z ) |
| 24 | 15 20 23 | mp2an | |- E. z e. On A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ z |
| 25 | bndrank | |- ( E. z e. On A. w e. { x e. A | ( rank ` x ) C_ ( rank ` y ) } ( rank ` w ) C_ z -> { x e. A | ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
|
| 26 | 24 25 | ax-mp | |- { x e. A | ( rank ` x ) C_ ( rank ` y ) } e. _V |
| 27 | 26 | ssex | |- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } C_ { x e. A | ( rank ` x ) C_ ( rank ` y ) } -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
| 28 | 14 27 | syl | |- ( y e. A -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
| 29 | 10 28 | exlimi | |- ( E. y y e. A -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
| 30 | 6 29 | sylbi | |- ( -. A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V ) |
| 31 | 5 30 | pm2.61i | |- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V |