This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq2sgn | |- ( A e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | rexr | |- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) |
|
| 4 | rexr | |- ( _pi e. RR -> _pi e. RR* ) |
|
| 5 | elioo2 | |- ( ( ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
| 7 | 1 2 6 | mp2an | |- ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) |
| 8 | resubcl | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A - ( _pi / 2 ) ) e. RR ) |
|
| 9 | 1 8 | mpan2 | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. RR ) |
| 10 | 0xr | |- 0 e. RR* |
|
| 11 | 1 | rexri | |- ( _pi / 2 ) e. RR* |
| 12 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) ) ) |
|
| 13 | 10 11 12 | mp2an | |- ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) ) |
| 14 | sincosq1sgn | |- ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
|
| 15 | 13 14 | sylbir | |- ( ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
| 16 | 9 15 | syl3an1 | |- ( ( A e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
| 17 | 16 | 3expib | |- ( A e. RR -> ( ( 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 18 | 0re | |- 0 e. RR |
|
| 19 | ltsub13 | |- ( ( 0 e. RR /\ A e. RR /\ ( _pi / 2 ) e. RR ) -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < ( A - 0 ) ) ) |
|
| 20 | 18 1 19 | mp3an13 | |- ( A e. RR -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < ( A - 0 ) ) ) |
| 21 | recn | |- ( A e. RR -> A e. CC ) |
|
| 22 | 21 | subid1d | |- ( A e. RR -> ( A - 0 ) = A ) |
| 23 | 22 | breq2d | |- ( A e. RR -> ( ( _pi / 2 ) < ( A - 0 ) <-> ( _pi / 2 ) < A ) ) |
| 24 | 20 23 | bitrd | |- ( A e. RR -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < A ) ) |
| 25 | ltsubadd | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < ( ( _pi / 2 ) + ( _pi / 2 ) ) ) ) |
|
| 26 | 1 1 25 | mp3an23 | |- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < ( ( _pi / 2 ) + ( _pi / 2 ) ) ) ) |
| 27 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 28 | 27 | breq2i | |- ( A < ( ( _pi / 2 ) + ( _pi / 2 ) ) <-> A < _pi ) |
| 29 | 26 28 | bitrdi | |- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < _pi ) ) |
| 30 | 24 29 | anbi12d | |- ( A e. RR -> ( ( 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) <-> ( ( _pi / 2 ) < A /\ A < _pi ) ) ) |
| 31 | 9 | resincld | |- ( A e. RR -> ( sin ` ( A - ( _pi / 2 ) ) ) e. RR ) |
| 32 | 31 | lt0neg2d | |- ( A e. RR -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 33 | 32 | anbi1d | |- ( A e. RR -> ( ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) <-> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 34 | 17 30 33 | 3imtr3d | |- ( A e. RR -> ( ( ( _pi / 2 ) < A /\ A < _pi ) -> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 35 | 1 | recni | |- ( _pi / 2 ) e. CC |
| 36 | pncan3 | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
|
| 37 | 35 21 36 | sylancr | |- ( A e. RR -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
| 38 | 37 | fveq2d | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` A ) ) |
| 39 | 9 | recnd | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. CC ) |
| 40 | coshalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
|
| 41 | 39 40 | syl | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 42 | 38 41 | eqtr3d | |- ( A e. RR -> ( cos ` A ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 43 | 42 | breq1d | |- ( A e. RR -> ( ( cos ` A ) < 0 <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 44 | 37 | fveq2d | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( sin ` A ) ) |
| 45 | sinhalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
|
| 46 | 39 45 | syl | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 47 | 44 46 | eqtr3d | |- ( A e. RR -> ( sin ` A ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 48 | 47 | breq2d | |- ( A e. RR -> ( 0 < ( sin ` A ) <-> 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
| 49 | 43 48 | anbi12d | |- ( A e. RR -> ( ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) <-> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 50 | 34 49 | sylibrd | |- ( A e. RR -> ( ( ( _pi / 2 ) < A /\ A < _pi ) -> ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) ) ) |
| 51 | 50 | 3impib | |- ( ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) -> ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) ) |
| 52 | 51 | ancomd | |- ( ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
| 53 | 7 52 | sylbi | |- ( A e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |