This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition formula for cosine. Equation 15 of Gleason p. 310. (Contributed by NM, 15-Jan-2006) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 2 | cosval | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) ) |
| 4 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 6 | coscl | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 8 | 5 7 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | sincl | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐵 ) ∈ ℂ ) |
| 12 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) | |
| 13 | 9 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 14 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 17 | 9 15 16 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 18 | 13 17 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 19 | 8 18 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 20 | 5 13 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 21 | 7 17 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 22 | 20 21 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 23 | 19 22 19 | ppncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) + ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 24 | adddi | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) | |
| 25 | 9 24 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) ) |
| 27 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 28 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 29 | 9 27 28 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 30 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 31 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 32 | 9 30 31 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
| 33 | efadd | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) |
| 35 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 36 | efival | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) | |
| 37 | 35 36 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 38 | 5 17 7 13 | muladdd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 39 | 37 38 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 40 | 26 34 39 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 41 | negicn | ⊢ - i ∈ ℂ | |
| 42 | adddi | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) | |
| 43 | 41 42 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) ) |
| 45 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 46 | 41 27 45 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
| 47 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) | |
| 48 | 41 30 47 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) |
| 49 | efadd | ⊢ ( ( ( - i · 𝐴 ) ∈ ℂ ∧ ( - i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) | |
| 50 | 46 48 49 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) |
| 51 | efmival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 52 | efmival | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( - i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) | |
| 53 | 51 52 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 54 | 5 17 7 13 | mulsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 55 | 53 54 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 56 | 44 50 55 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 57 | 40 56 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) + ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) ) |
| 58 | 19 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 59 | 23 57 58 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) + ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / 2 ) = ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) ) |
| 61 | 2cn | ⊢ 2 ∈ ℂ | |
| 62 | 2ne0 | ⊢ 2 ≠ 0 | |
| 63 | divcan3 | ⊢ ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) | |
| 64 | 61 62 63 | mp3an23 | ⊢ ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 65 | 19 64 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 66 | 9 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 67 | 66 11 66 15 | mul4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) ) |
| 68 | ixi | ⊢ ( i · i ) = - 1 | |
| 69 | 68 | oveq1i | ⊢ ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) |
| 70 | 11 15 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 71 | 70 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 72 | 69 71 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · i ) · ( ( sin ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 73 | 15 11 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 74 | 73 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 75 | 67 72 74 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 77 | 8 73 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 78 | 65 76 77 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / 2 ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 79 | 3 60 78 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |