This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A useful intermediate step in tanadd when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanaddlem | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` A ) e. CC ) |
| 3 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 4 | 3 | ad2antlr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` B ) e. CC ) |
| 5 | 2 4 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 6 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 7 | 6 | ad2antrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( sin ` A ) e. CC ) |
| 8 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 9 | 8 | ad2antlr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( sin ` B ) e. CC ) |
| 10 | 7 9 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
| 11 | 5 10 | subeq0ad | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) = 0 <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 12 | cosadd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 13 | 12 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 14 | 13 | eqeq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) = 0 <-> ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) = 0 ) ) |
| 15 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 16 | 15 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 17 | tanval | |- ( ( B e. CC /\ ( cos ` B ) =/= 0 ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) |
|
| 18 | 17 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) |
| 19 | 16 18 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) = ( ( ( sin ` A ) / ( cos ` A ) ) x. ( ( sin ` B ) / ( cos ` B ) ) ) ) |
| 20 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` A ) =/= 0 ) |
|
| 21 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` B ) =/= 0 ) |
|
| 22 | 7 2 9 4 20 21 | divmuldivd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( sin ` A ) / ( cos ` A ) ) x. ( ( sin ` B ) / ( cos ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
| 23 | 19 22 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
| 24 | 23 | eqeq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( tan ` A ) x. ( tan ` B ) ) = 1 <-> ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) = 1 ) ) |
| 25 | 1cnd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> 1 e. CC ) |
|
| 26 | 2 4 20 21 | mulne0d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) =/= 0 ) |
| 27 | 10 5 25 26 | divmuld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) = 1 <-> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 28 | 5 | mulridd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
| 29 | 28 | eqeq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( sin ` A ) x. ( sin ` B ) ) <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 30 | 24 27 29 | 3bitrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( tan ` A ) x. ( tan ` B ) ) = 1 <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 31 | 11 14 30 | 3bitr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) = 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) = 1 ) ) |
| 32 | 31 | necon3bid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) |