This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction ( npcan analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | |- B = ( Base ` G ) |
|
| grpsubadd.p | |- .+ = ( +g ` G ) |
||
| grpsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | grpnpcan | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) .+ Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | |- B = ( Base ` G ) |
|
| 2 | grpsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 5 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
| 6 | 5 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
| 7 | 1 2 | grpcl | |- ( ( G e. Grp /\ X e. B /\ ( ( invg ` G ) ` Y ) e. B ) -> ( X .+ ( ( invg ` G ) ` Y ) ) e. B ) |
| 8 | 6 7 | syld3an3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( invg ` G ) ` Y ) ) e. B ) |
| 9 | 1 2 4 3 | grpsubval | |- ( ( ( X .+ ( ( invg ` G ) ` Y ) ) e. B /\ ( ( invg ` G ) ` Y ) e. B ) -> ( ( X .+ ( ( invg ` G ) ` Y ) ) .- ( ( invg ` G ) ` Y ) ) = ( ( X .+ ( ( invg ` G ) ` Y ) ) .+ ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) ) ) |
| 10 | 8 6 9 | syl2anc | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( ( invg ` G ) ` Y ) ) .- ( ( invg ` G ) ` Y ) ) = ( ( X .+ ( ( invg ` G ) ` Y ) ) .+ ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) ) ) |
| 11 | 1 2 3 | grppncan | |- ( ( G e. Grp /\ X e. B /\ ( ( invg ` G ) ` Y ) e. B ) -> ( ( X .+ ( ( invg ` G ) ` Y ) ) .- ( ( invg ` G ) ` Y ) ) = X ) |
| 12 | 6 11 | syld3an3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( ( invg ` G ) ` Y ) ) .- ( ( invg ` G ) ` Y ) ) = X ) |
| 13 | 1 2 4 3 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( ( invg ` G ) ` Y ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( ( invg ` G ) ` Y ) ) ) |
| 15 | 14 | eqcomd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( invg ` G ) ` Y ) ) = ( X .- Y ) ) |
| 16 | 1 4 | grpinvinv | |- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y ) |
| 17 | 16 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y ) |
| 18 | 15 17 | oveq12d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( ( invg ` G ) ` Y ) ) .+ ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) ) = ( ( X .- Y ) .+ Y ) ) |
| 19 | 10 12 18 | 3eqtr3rd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) .+ Y ) = X ) |