This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| Assertion | nmzbi | |- ( ( A e. N /\ B e. X ) -> ( ( A .+ B ) e. S <-> ( B .+ A ) e. S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| 2 | 1 | elnmz | |- ( A e. N <-> ( A e. X /\ A. z e. X ( ( A .+ z ) e. S <-> ( z .+ A ) e. S ) ) ) |
| 3 | 2 | simprbi | |- ( A e. N -> A. z e. X ( ( A .+ z ) e. S <-> ( z .+ A ) e. S ) ) |
| 4 | oveq2 | |- ( z = B -> ( A .+ z ) = ( A .+ B ) ) |
|
| 5 | 4 | eleq1d | |- ( z = B -> ( ( A .+ z ) e. S <-> ( A .+ B ) e. S ) ) |
| 6 | oveq1 | |- ( z = B -> ( z .+ A ) = ( B .+ A ) ) |
|
| 7 | 6 | eleq1d | |- ( z = B -> ( ( z .+ A ) e. S <-> ( B .+ A ) e. S ) ) |
| 8 | 5 7 | bibi12d | |- ( z = B -> ( ( ( A .+ z ) e. S <-> ( z .+ A ) e. S ) <-> ( ( A .+ B ) e. S <-> ( B .+ A ) e. S ) ) ) |
| 9 | 8 | rspccva | |- ( ( A. z e. X ( ( A .+ z ) e. S <-> ( z .+ A ) e. S ) /\ B e. X ) -> ( ( A .+ B ) e. S <-> ( B .+ A ) e. S ) ) |
| 10 | 3 9 | sylan | |- ( ( A e. N /\ B e. X ) -> ( ( A .+ B ) e. S <-> ( B .+ A ) e. S ) ) |