This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | compsscnv | |- `' F = F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | cnvopab | |- `' { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } = { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
|
| 3 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
| 4 | 3 | cbvmptv | |- ( x e. ~P A |-> ( A \ x ) ) = ( y e. ~P A |-> ( A \ y ) ) |
| 5 | df-mpt | |- ( y e. ~P A |-> ( A \ y ) ) = { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
|
| 6 | 1 4 5 | 3eqtri | |- F = { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
| 7 | 6 | cnveqi | |- `' F = `' { <. y , x >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
| 8 | df-mpt | |- ( x e. ~P A |-> ( A \ x ) ) = { <. x , y >. | ( x e. ~P A /\ y = ( A \ x ) ) } |
|
| 9 | compsscnvlem | |- ( ( y e. ~P A /\ x = ( A \ y ) ) -> ( x e. ~P A /\ y = ( A \ x ) ) ) |
|
| 10 | compsscnvlem | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |
|
| 11 | 9 10 | impbii | |- ( ( y e. ~P A /\ x = ( A \ y ) ) <-> ( x e. ~P A /\ y = ( A \ x ) ) ) |
| 12 | 11 | opabbii | |- { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } = { <. x , y >. | ( x e. ~P A /\ y = ( A \ x ) ) } |
| 13 | 8 1 12 | 3eqtr4i | |- F = { <. x , y >. | ( y e. ~P A /\ x = ( A \ y ) ) } |
| 14 | 2 7 13 | 3eqtr4i | |- `' F = F |