This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdifcom1 | |- ( ( A C_ C /\ B C_ C ) -> ( ( C \ A ) C. B <-> ( C \ B ) C. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difcom | |- ( ( C \ A ) C_ B <-> ( C \ B ) C_ A ) |
|
| 2 | 1 | a1i | |- ( ( A C_ C /\ B C_ C ) -> ( ( C \ A ) C_ B <-> ( C \ B ) C_ A ) ) |
| 3 | ssconb | |- ( ( B C_ C /\ A C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
|
| 4 | 3 | ancoms | |- ( ( A C_ C /\ B C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
| 5 | 4 | notbid | |- ( ( A C_ C /\ B C_ C ) -> ( -. B C_ ( C \ A ) <-> -. A C_ ( C \ B ) ) ) |
| 6 | 2 5 | anbi12d | |- ( ( A C_ C /\ B C_ C ) -> ( ( ( C \ A ) C_ B /\ -. B C_ ( C \ A ) ) <-> ( ( C \ B ) C_ A /\ -. A C_ ( C \ B ) ) ) ) |
| 7 | dfpss3 | |- ( ( C \ A ) C. B <-> ( ( C \ A ) C_ B /\ -. B C_ ( C \ A ) ) ) |
|
| 8 | dfpss3 | |- ( ( C \ B ) C. A <-> ( ( C \ B ) C_ A /\ -. A C_ ( C \ B ) ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( ( C \ A ) C. B <-> ( C \ B ) C. A ) ) |