This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1z.p | |- P = ( Poly1 ` R ) |
|
| coe1z.z | |- .0. = ( 0g ` P ) |
||
| coe1z.y | |- Y = ( 0g ` R ) |
||
| Assertion | coe1z | |- ( R e. Ring -> ( coe1 ` .0. ) = ( NN0 X. { Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1z.p | |- P = ( Poly1 ` R ) |
|
| 2 | coe1z.z | |- .0. = ( 0g ` P ) |
|
| 3 | coe1z.y | |- Y = ( 0g ` R ) |
|
| 4 | fconst6g | |- ( a e. NN0 -> ( 1o X. { a } ) : 1o --> NN0 ) |
|
| 5 | 4 | adantl | |- ( ( R e. Ring /\ a e. NN0 ) -> ( 1o X. { a } ) : 1o --> NN0 ) |
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 1oex | |- 1o e. _V |
|
| 8 | 6 7 | elmap | |- ( ( 1o X. { a } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { a } ) : 1o --> NN0 ) |
| 9 | 5 8 | sylibr | |- ( ( R e. Ring /\ a e. NN0 ) -> ( 1o X. { a } ) e. ( NN0 ^m 1o ) ) |
| 10 | eqidd | |- ( R e. Ring -> ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) ) |
|
| 11 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 12 | psr1baslem | |- ( NN0 ^m 1o ) = { c e. ( NN0 ^m 1o ) | ( `' c " NN ) e. Fin } |
|
| 13 | 11 1 2 | ply1mpl0 | |- .0. = ( 0g ` ( 1o mPoly R ) ) |
| 14 | 1on | |- 1o e. On |
|
| 15 | 14 | a1i | |- ( R e. Ring -> 1o e. On ) |
| 16 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 17 | 11 12 3 13 15 16 | mpl0 | |- ( R e. Ring -> .0. = ( ( NN0 ^m 1o ) X. { Y } ) ) |
| 18 | fconstmpt | |- ( ( NN0 ^m 1o ) X. { Y } ) = ( b e. ( NN0 ^m 1o ) |-> Y ) |
|
| 19 | 17 18 | eqtrdi | |- ( R e. Ring -> .0. = ( b e. ( NN0 ^m 1o ) |-> Y ) ) |
| 20 | eqidd | |- ( b = ( 1o X. { a } ) -> Y = Y ) |
|
| 21 | 9 10 19 20 | fmptco | |- ( R e. Ring -> ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( a e. NN0 |-> Y ) ) |
| 22 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 23 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 24 | 23 2 | ring0cl | |- ( P e. Ring -> .0. e. ( Base ` P ) ) |
| 25 | eqid | |- ( coe1 ` .0. ) = ( coe1 ` .0. ) |
|
| 26 | eqid | |- ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) |
|
| 27 | 25 23 1 26 | coe1fval2 | |- ( .0. e. ( Base ` P ) -> ( coe1 ` .0. ) = ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 28 | 22 24 27 | 3syl | |- ( R e. Ring -> ( coe1 ` .0. ) = ( .0. o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 29 | fconstmpt | |- ( NN0 X. { Y } ) = ( a e. NN0 |-> Y ) |
|
| 30 | 29 | a1i | |- ( R e. Ring -> ( NN0 X. { Y } ) = ( a e. NN0 |-> Y ) ) |
| 31 | 21 28 30 | 3eqtr4d | |- ( R e. Ring -> ( coe1 ` .0. ) = ( NN0 X. { Y } ) ) |