This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1mpl0.m | |- M = ( 1o mPoly R ) |
|
| ply1mpl0.p | |- P = ( Poly1 ` R ) |
||
| ply1mpl0.z | |- .0. = ( 0g ` P ) |
||
| Assertion | ply1mpl0 | |- .0. = ( 0g ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1mpl0.m | |- M = ( 1o mPoly R ) |
|
| 2 | ply1mpl0.p | |- P = ( Poly1 ` R ) |
|
| 3 | ply1mpl0.z | |- .0. = ( 0g ` P ) |
|
| 4 | eqidd | |- ( T. -> ( Base ` P ) = ( Base ` P ) ) |
|
| 5 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 6 | 2 5 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 7 | 1 | fveq2i | |- ( Base ` M ) = ( Base ` ( 1o mPoly R ) ) |
| 8 | 6 7 | eqtr4i | |- ( Base ` P ) = ( Base ` M ) |
| 9 | 8 | a1i | |- ( T. -> ( Base ` P ) = ( Base ` M ) ) |
| 10 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 11 | 2 1 10 | ply1plusg | |- ( +g ` P ) = ( +g ` M ) |
| 12 | 11 | a1i | |- ( T. -> ( +g ` P ) = ( +g ` M ) ) |
| 13 | 12 | oveqdr | |- ( ( T. /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` M ) y ) ) |
| 14 | 4 9 13 | grpidpropd | |- ( T. -> ( 0g ` P ) = ( 0g ` M ) ) |
| 15 | 14 | mptru | |- ( 0g ` P ) = ( 0g ` M ) |
| 16 | 3 15 | eqtri | |- .0. = ( 0g ` M ) |