This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a left module over itself. The vector operation is + , and the scalar product is x. . (Contributed by AV, 20-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
| Assertion | cnlmod | |- W e. LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
| 2 | 0cn | |- 0 e. CC |
|
| 3 | 1 | cnlmodlem1 | |- ( Base ` W ) = CC |
| 4 | 3 | eqcomi | |- CC = ( Base ` W ) |
| 5 | 4 | a1i | |- ( 0 e. CC -> CC = ( Base ` W ) ) |
| 6 | 1 | cnlmodlem2 | |- ( +g ` W ) = + |
| 7 | 6 | eqcomi | |- + = ( +g ` W ) |
| 8 | 7 | a1i | |- ( 0 e. CC -> + = ( +g ` W ) ) |
| 9 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 10 | 9 | 3adant1 | |- ( ( 0 e. CC /\ x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
| 11 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 12 | 11 | adantl | |- ( ( 0 e. CC /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 13 | id | |- ( 0 e. CC -> 0 e. CC ) |
|
| 14 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 15 | 14 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) |
| 16 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 17 | 16 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> -u x e. CC ) |
| 18 | id | |- ( x e. CC -> x e. CC ) |
|
| 19 | 16 18 | addcomd | |- ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) |
| 20 | 19 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) |
| 21 | negid | |- ( x e. CC -> ( x + -u x ) = 0 ) |
|
| 22 | 21 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( x + -u x ) = 0 ) |
| 23 | 20 22 | eqtrd | |- ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = 0 ) |
| 24 | 5 8 10 12 13 15 17 23 | isgrpd | |- ( 0 e. CC -> W e. Grp ) |
| 25 | 4 | a1i | |- ( W e. Grp -> CC = ( Base ` W ) ) |
| 26 | 7 | a1i | |- ( W e. Grp -> + = ( +g ` W ) ) |
| 27 | 1 | cnlmodlem3 | |- ( Scalar ` W ) = CCfld |
| 28 | 27 | eqcomi | |- CCfld = ( Scalar ` W ) |
| 29 | 28 | a1i | |- ( W e. Grp -> CCfld = ( Scalar ` W ) ) |
| 30 | 1 | cnlmod4 | |- ( .s ` W ) = x. |
| 31 | 30 | eqcomi | |- x. = ( .s ` W ) |
| 32 | 31 | a1i | |- ( W e. Grp -> x. = ( .s ` W ) ) |
| 33 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 34 | 33 | a1i | |- ( W e. Grp -> CC = ( Base ` CCfld ) ) |
| 35 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 36 | 35 | a1i | |- ( W e. Grp -> + = ( +g ` CCfld ) ) |
| 37 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 38 | 37 | a1i | |- ( W e. Grp -> x. = ( .r ` CCfld ) ) |
| 39 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 40 | 39 | a1i | |- ( W e. Grp -> 1 = ( 1r ` CCfld ) ) |
| 41 | cnring | |- CCfld e. Ring |
|
| 42 | 41 | a1i | |- ( W e. Grp -> CCfld e. Ring ) |
| 43 | id | |- ( W e. Grp -> W e. Grp ) |
|
| 44 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 45 | 44 | 3adant1 | |- ( ( W e. Grp /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 46 | adddi | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
|
| 47 | 46 | adantl | |- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
| 48 | adddir | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
|
| 49 | 48 | adantl | |- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
| 50 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
|
| 51 | 50 | adantl | |- ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 52 | mullid | |- ( x e. CC -> ( 1 x. x ) = x ) |
|
| 53 | 52 | adantl | |- ( ( W e. Grp /\ x e. CC ) -> ( 1 x. x ) = x ) |
| 54 | 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 | islmodd | |- ( W e. Grp -> W e. LMod ) |
| 55 | 2 24 54 | mp2b | |- W e. LMod |