This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a left module over itself. The vector operation is + , and the scalar product is x. . (Contributed by AV, 20-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnlmod.w | ⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) | |
| Assertion | cnlmod | ⊢ 𝑊 ∈ LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlmod.w | ⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | 1 | cnlmodlem1 | ⊢ ( Base ‘ 𝑊 ) = ℂ |
| 4 | 3 | eqcomi | ⊢ ℂ = ( Base ‘ 𝑊 ) |
| 5 | 4 | a1i | ⊢ ( 0 ∈ ℂ → ℂ = ( Base ‘ 𝑊 ) ) |
| 6 | 1 | cnlmodlem2 | ⊢ ( +g ‘ 𝑊 ) = + |
| 7 | 6 | eqcomi | ⊢ + = ( +g ‘ 𝑊 ) |
| 8 | 7 | a1i | ⊢ ( 0 ∈ ℂ → + = ( +g ‘ 𝑊 ) ) |
| 9 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 10 | 9 | 3adant1 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 11 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 13 | id | ⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) | |
| 14 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 15 | 14 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 16 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 17 | 16 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → - 𝑥 ∈ ℂ ) |
| 18 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 19 | 16 18 | addcomd | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
| 21 | negid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) | |
| 22 | 21 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = 0 ) |
| 23 | 20 22 | eqtrd | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = 0 ) |
| 24 | 5 8 10 12 13 15 17 23 | isgrpd | ⊢ ( 0 ∈ ℂ → 𝑊 ∈ Grp ) |
| 25 | 4 | a1i | ⊢ ( 𝑊 ∈ Grp → ℂ = ( Base ‘ 𝑊 ) ) |
| 26 | 7 | a1i | ⊢ ( 𝑊 ∈ Grp → + = ( +g ‘ 𝑊 ) ) |
| 27 | 1 | cnlmodlem3 | ⊢ ( Scalar ‘ 𝑊 ) = ℂfld |
| 28 | 27 | eqcomi | ⊢ ℂfld = ( Scalar ‘ 𝑊 ) |
| 29 | 28 | a1i | ⊢ ( 𝑊 ∈ Grp → ℂfld = ( Scalar ‘ 𝑊 ) ) |
| 30 | 1 | cnlmod4 | ⊢ ( ·𝑠 ‘ 𝑊 ) = · |
| 31 | 30 | eqcomi | ⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 32 | 31 | a1i | ⊢ ( 𝑊 ∈ Grp → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 33 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 34 | 33 | a1i | ⊢ ( 𝑊 ∈ Grp → ℂ = ( Base ‘ ℂfld ) ) |
| 35 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 36 | 35 | a1i | ⊢ ( 𝑊 ∈ Grp → + = ( +g ‘ ℂfld ) ) |
| 37 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 38 | 37 | a1i | ⊢ ( 𝑊 ∈ Grp → · = ( .r ‘ ℂfld ) ) |
| 39 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 40 | 39 | a1i | ⊢ ( 𝑊 ∈ Grp → 1 = ( 1r ‘ ℂfld ) ) |
| 41 | cnring | ⊢ ℂfld ∈ Ring | |
| 42 | 41 | a1i | ⊢ ( 𝑊 ∈ Grp → ℂfld ∈ Ring ) |
| 43 | id | ⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ Grp ) | |
| 44 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 45 | 44 | 3adant1 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 46 | adddi | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 48 | adddir | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 50 | mulass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 51 | 50 | adantl | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 52 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 53 | 52 | adantl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 54 | 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 | islmodd | ⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ LMod ) |
| 55 | 2 24 54 | mp2b | ⊢ 𝑊 ∈ LMod |