This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
| Assertion | cnstrcvs | |- W e. CVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlmod.w | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) |
|
| 2 | 1 | cnlmod | |- W e. LMod |
| 3 | cnfldex | |- CCfld e. _V |
|
| 4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 5 | 4 | ressid | |- ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld ) |
| 6 | 3 5 | ax-mp | |- ( CCfld |`s CC ) = CCfld |
| 7 | 6 | eqcomi | |- CCfld = ( CCfld |`s CC ) |
| 8 | id | |- ( x e. CC -> x e. CC ) |
|
| 9 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 10 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 11 | ax-1cn | |- 1 e. CC |
|
| 12 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 13 | 8 9 10 11 12 | cnsubrglem | |- CC e. ( SubRing ` CCfld ) |
| 14 | qdass | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) |
|
| 15 | 1 14 | eqtri | |- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) |
| 16 | 15 | lmodsca | |- ( CCfld e. _V -> CCfld = ( Scalar ` W ) ) |
| 17 | 3 16 | ax-mp | |- CCfld = ( Scalar ` W ) |
| 18 | 17 | isclmi | |- ( ( W e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> W e. CMod ) |
| 19 | 2 7 13 18 | mp3an | |- W e. CMod |
| 20 | cndrng | |- CCfld e. DivRing |
|
| 21 | 17 | islvec | |- ( W e. LVec <-> ( W e. LMod /\ CCfld e. DivRing ) ) |
| 22 | 2 20 21 | mpbir2an | |- W e. LVec |
| 23 | 19 22 | elini | |- W e. ( CMod i^i LVec ) |
| 24 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 25 | 23 24 | eleqtrri | |- W e. CVec |