This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldcusp | |- CCfld e. CUnifSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | 1 | ne0ii | |- CC =/= (/) |
| 3 | cncms | |- CCfld e. CMetSp |
|
| 4 | eqid | |- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
|
| 5 | 4 | cnflduss | |- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
| 6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 7 | absf | |- abs : CC --> RR |
|
| 8 | subf | |- - : ( CC X. CC ) --> CC |
|
| 9 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 10 | 7 8 9 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 11 | ffn | |- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
|
| 12 | fnresdm | |- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
|
| 13 | 10 11 12 | mp2b | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
| 14 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 15 | 14 | reseq1i | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 16 | 13 15 | eqtr3i | |- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 17 | 6 16 4 | cmetcusp1 | |- ( ( CC =/= (/) /\ CCfld e. CMetSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) -> CCfld e. CUnifSp ) |
| 18 | 2 3 5 17 | mp3an | |- CCfld e. CUnifSp |