This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) Revise df-cnfld . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf | |- abs : CC --> RR |
|
| 2 | subf | |- - : ( CC X. CC ) --> CC |
|
| 3 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 4 | 1 2 3 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 5 | cnex | |- CC e. _V |
|
| 6 | 5 5 | xpex | |- ( CC X. CC ) e. _V |
| 7 | reex | |- RR e. _V |
|
| 8 | fex2 | |- ( ( ( abs o. - ) : ( CC X. CC ) --> RR /\ ( CC X. CC ) e. _V /\ RR e. _V ) -> ( abs o. - ) e. _V ) |
|
| 9 | 4 6 7 8 | mp3an | |- ( abs o. - ) e. _V |
| 10 | cnfldstr | |- CCfld Struct <. 1 , ; 1 3 >. |
|
| 11 | dsid | |- dist = Slot ( dist ` ndx ) |
|
| 12 | snsstp3 | |- { <. ( dist ` ndx ) , ( abs o. - ) >. } C_ { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
|
| 13 | ssun1 | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } C_ ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
|
| 14 | ssun2 | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 15 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 16 | 14 15 | sseqtrri | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) C_ CCfld |
| 17 | 13 16 | sstri | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } C_ CCfld |
| 18 | 12 17 | sstri | |- { <. ( dist ` ndx ) , ( abs o. - ) >. } C_ CCfld |
| 19 | 10 11 18 | strfv | |- ( ( abs o. - ) e. _V -> ( abs o. - ) = ( dist ` CCfld ) ) |
| 20 | 9 19 | ax-mp | |- ( abs o. - ) = ( dist ` CCfld ) |