This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncms | |- CCfld e. CMetSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldms | |- CCfld e. MetSp |
|
| 2 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 3 | 2 | cncmet | |- ( abs o. - ) e. ( CMet ` CC ) |
| 4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 5 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 6 | metf | |- ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 7 | 5 6 | ax-mp | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 8 | ffn | |- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
|
| 9 | fnresdm | |- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
|
| 10 | 7 8 9 | mp2b | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
| 11 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 12 | 11 | reseq1i | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 13 | 10 12 | eqtr3i | |- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 14 | 4 13 | iscms | |- ( CCfld e. CMetSp <-> ( CCfld e. MetSp /\ ( abs o. - ) e. ( CMet ` CC ) ) ) |
| 15 | 1 3 14 | mpbir2an | |- CCfld e. CMetSp |