This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnflduss.1 | |- U = ( UnifSt ` CCfld ) |
|
| Assertion | cnflduss | |- U = ( metUnif ` ( abs o. - ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnflduss.1 | |- U = ( UnifSt ` CCfld ) |
|
| 2 | 0cn | |- 0 e. CC |
|
| 3 | 2 | ne0ii | |- CC =/= (/) |
| 4 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 5 | xmetpsmet | |- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
|
| 6 | 4 5 | ax-mp | |- ( abs o. - ) e. ( PsMet ` CC ) |
| 7 | metuust | |- ( ( CC =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) ) -> ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) ) |
|
| 8 | 3 6 7 | mp2an | |- ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) |
| 9 | ustuni | |- ( ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) -> U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) ) |
|
| 10 | 8 9 | ax-mp | |- U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) |
| 11 | 10 | eqcomi | |- ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) |
| 12 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 13 | cnfldunif | |- ( metUnif ` ( abs o. - ) ) = ( UnifSet ` CCfld ) |
|
| 14 | 12 13 | ussid | |- ( ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) -> ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) ) |
| 15 | 11 14 | ax-mp | |- ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) |
| 16 | 1 15 | eqtr4i | |- U = ( metUnif ` ( abs o. - ) ) |