This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldcusp | ⊢ ℂfld ∈ CUnifSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | 1 | ne0ii | ⊢ ℂ ≠ ∅ |
| 3 | cncms | ⊢ ℂfld ∈ CMetSp | |
| 4 | eqid | ⊢ ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld ) | |
| 5 | 4 | cnflduss | ⊢ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) |
| 6 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 7 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 8 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 9 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 11 | ffn | ⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) | |
| 12 | fnresdm | ⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) | |
| 13 | 10 11 12 | mp2b | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
| 14 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 15 | 14 | reseq1i | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 16 | 13 15 | eqtr3i | ⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 17 | 6 16 4 | cmetcusp1 | ⊢ ( ( ℂ ≠ ∅ ∧ ℂfld ∈ CMetSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) → ℂfld ∈ CUnifSp ) |
| 18 | 2 3 5 17 | mp3an | ⊢ ℂfld ∈ CUnifSp |