This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cncrng as of 30-Apr-2025. (Contributed by Mario Carneiro, 8-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncrngOLD | |- CCfld e. CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | 1 | a1i | |- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 4 | 3 | a1i | |- ( T. -> + = ( +g ` CCfld ) ) |
| 5 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 6 | 5 | a1i | |- ( T. -> x. = ( .r ` CCfld ) ) |
| 7 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 8 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 9 | 0cn | |- 0 e. CC |
|
| 10 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 11 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 12 | addcom | |- ( ( -u x e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) |
|
| 13 | 11 12 | mpancom | |- ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) |
| 14 | negid | |- ( x e. CC -> ( x + -u x ) = 0 ) |
|
| 15 | 13 14 | eqtrd | |- ( x e. CC -> ( -u x + x ) = 0 ) |
| 16 | 1 3 7 8 9 10 11 15 | isgrpi | |- CCfld e. Grp |
| 17 | 16 | a1i | |- ( T. -> CCfld e. Grp ) |
| 18 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 19 | 18 | 3adant1 | |- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 20 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
|
| 21 | 20 | adantl | |- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 22 | adddi | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
|
| 23 | 22 | adantl | |- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
| 24 | adddir | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
|
| 25 | 24 | adantl | |- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
| 26 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 27 | mullid | |- ( x e. CC -> ( 1 x. x ) = x ) |
|
| 28 | 27 | adantl | |- ( ( T. /\ x e. CC ) -> ( 1 x. x ) = x ) |
| 29 | mulrid | |- ( x e. CC -> ( x x. 1 ) = x ) |
|
| 30 | 29 | adantl | |- ( ( T. /\ x e. CC ) -> ( x x. 1 ) = x ) |
| 31 | mulcom | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
|
| 32 | 31 | 3adant1 | |- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
| 33 | 2 4 6 17 19 21 23 25 26 28 30 32 | iscrngd | |- ( T. -> CCfld e. CRing ) |
| 34 | 33 | mptru | |- CCfld e. CRing |