This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a group. N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 3-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpi.b | |- B = ( Base ` G ) |
|
| isgrpi.p | |- .+ = ( +g ` G ) |
||
| isgrpi.c | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
||
| isgrpi.a | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| isgrpi.z | |- .0. e. B |
||
| isgrpi.i | |- ( x e. B -> ( .0. .+ x ) = x ) |
||
| isgrpi.n | |- ( x e. B -> N e. B ) |
||
| isgrpi.j | |- ( x e. B -> ( N .+ x ) = .0. ) |
||
| Assertion | isgrpi | |- G e. Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpi.b | |- B = ( Base ` G ) |
|
| 2 | isgrpi.p | |- .+ = ( +g ` G ) |
|
| 3 | isgrpi.c | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| 4 | isgrpi.a | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 5 | isgrpi.z | |- .0. e. B |
|
| 6 | isgrpi.i | |- ( x e. B -> ( .0. .+ x ) = x ) |
|
| 7 | isgrpi.n | |- ( x e. B -> N e. B ) |
|
| 8 | isgrpi.j | |- ( x e. B -> ( N .+ x ) = .0. ) |
|
| 9 | 1 | a1i | |- ( T. -> B = ( Base ` G ) ) |
| 10 | 2 | a1i | |- ( T. -> .+ = ( +g ` G ) ) |
| 11 | 3 | 3adant1 | |- ( ( T. /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 12 | 4 | adantl | |- ( ( T. /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 13 | 5 | a1i | |- ( T. -> .0. e. B ) |
| 14 | 6 | adantl | |- ( ( T. /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 15 | 7 | adantl | |- ( ( T. /\ x e. B ) -> N e. B ) |
| 16 | 8 | adantl | |- ( ( T. /\ x e. B ) -> ( N .+ x ) = .0. ) |
| 17 | 9 10 11 12 13 14 15 16 | isgrpd | |- ( T. -> G e. Grp ) |
| 18 | 17 | mptru | |- G e. Grp |