This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isringd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| isringd.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| isringd.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isringd.g | |- ( ph -> R e. Grp ) |
||
| isringd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
||
| isringd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
||
| isringd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
||
| isringd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
||
| isringd.u | |- ( ph -> .1. e. B ) |
||
| isringd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
||
| isringd.h | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
||
| iscrngd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) = ( y .x. x ) ) |
||
| Assertion | iscrngd | |- ( ph -> R e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | isringd.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 3 | isringd.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 4 | isringd.g | |- ( ph -> R e. Grp ) |
|
| 5 | isringd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
|
| 6 | isringd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
|
| 7 | isringd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
|
| 8 | isringd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
|
| 9 | isringd.u | |- ( ph -> .1. e. B ) |
|
| 10 | isringd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
|
| 11 | isringd.h | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
|
| 12 | iscrngd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) = ( y .x. x ) ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 10 11 | isringd | |- ( ph -> R e. Ring ) |
| 14 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 14 15 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 17 | 1 16 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` R ) ) ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 14 18 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 20 | 3 19 | eqtrdi | |- ( ph -> .x. = ( +g ` ( mulGrp ` R ) ) ) |
| 21 | 17 20 5 6 9 10 11 | ismndd | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 22 | 17 20 21 12 | iscmnd | |- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 23 | 14 | iscrng | |- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
| 24 | 13 22 23 | sylanbrc | |- ( ph -> R e. CRing ) |