This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cncrng as of 30-Apr-2025. (Contributed by Mario Carneiro, 8-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncrngOLD | ⊢ ℂfld ∈ CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
| 5 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 7 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 8 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 9 | 0cn | ⊢ 0 ∈ ℂ | |
| 10 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 11 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 12 | addcom | ⊢ ( ( - 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) | |
| 13 | 11 12 | mpancom | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
| 14 | negid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) | |
| 15 | 13 14 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 16 | 1 3 7 8 9 10 11 15 | isgrpi | ⊢ ℂfld ∈ Grp |
| 17 | 16 | a1i | ⊢ ( ⊤ → ℂfld ∈ Grp ) |
| 18 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 19 | 18 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 20 | mulass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 21 | 20 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 22 | adddi | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 24 | adddir | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 26 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 27 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 28 | 27 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 29 | mulrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) | |
| 30 | 29 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 31 | mulcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | |
| 32 | 31 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 33 | 2 4 6 17 19 21 23 25 26 28 30 32 | iscrngd | ⊢ ( ⊤ → ℂfld ∈ CRing ) |
| 34 | 33 | mptru | ⊢ ℂfld ∈ CRing |